A Dual-Fed PIFA Antenna Element With Nonsymmetric Impedance Matrix for High-Efficiency Doherty Transmitters: Integrated Design and OTA-Characterization

2020 ◽  
Vol 68 (1) ◽  
pp. 21-32 ◽  
Author(s):  
Oleg A. Iupikov ◽  
William Hallberg ◽  
Rob Maaskant ◽  
Christian Fager ◽  
Robert Rehammar ◽  
...  
Author(s):  
J. Schiffmann

Small scale turbomachines in domestic heat pumps reach high efficiency and provide oil-free solutions which improve heat-exchanger performance and offer major advantages in the design of advanced thermodynamic cycles. An appropriate turbocompressor for domestic air based heat pumps requires the ability to operate on a wide range of inlet pressure, pressure ratios and mass flows, confronting the designer with the necessity to compromise between range and efficiency. Further the design of small-scale direct driven turbomachines is a complex and interdisciplinary task. Textbook design procedures propose to split such systems into subcomponents and to design and optimize each element individually. This common procedure, however, tends to neglect the interactions between the different components leading to suboptimal solutions. The authors propose an approach based on the integrated philosophy for designing and optimizing gas bearing supported, direct driven turbocompressors for applications with challenging requirements with regards to operation range and efficiency. Using previously validated reduced order models for the different components an integrated model of the compressor is implemented and the optimum system found via multi-objective optimization. It is shown that compared to standard design procedure the integrated approach yields an increase of the seasonal compressor efficiency of more than 12 points. Further a design optimization based sensitivity analysis allows to investigate the influence of design constraints determined prior to optimization such as impeller surface roughness, rotor material and impeller force. A relaxation of these constrains yields additional room for improvement. Reduced impeller force improves efficiency due to a smaller thrust bearing mainly, whereas a lighter rotor material improves rotordynamic performance. A hydraulically smoother impeller surface improves the overall efficiency considerably by reducing aerodynamic losses. A combination of the relaxation of the 3 design constraints yields an additional improvement of 6 points compared to the original optimization process. The integrated design and optimization procedure implemented in the case of a complex design problem thus clearly shows its advantages compared to traditional design methods by allowing a truly exhaustive search for optimum solutions throughout the complete design space. It can be used for both design optimization and for design analysis.


Author(s):  
Yuan-Ting Wu ◽  
Christian K. Funk ◽  
Pei-feng Hsu ◽  
Jerome Le Moine ◽  
Ran Zhou ◽  
...  

Shrouds are important for damping vibrations in gas turbine blades. In modern industrial high-output, high-efficiency engines, long turbine blades can require the use of a mid-span or partial-span damping ring. However, the inclusion of a mid-span damping shroud, or “snubber,” can have negative effects on the aerodynamic performance of the gas turbine stage and engine. Therefore, a method of iterative study and optimization was applied to minimize the drag force caused by the snubber, while maximizing the structural life of the blade. The approach used integrated design environment software to perform parametric studies of the design space in preparation for optimization of the blade snubber geometry. The drivers employed in Isight 4.0/4.5 [9] optimization software carried out the parametric study and reported the results to the designer. Considering these results, the designer chose the initial seeding geometry of the optimization driver which greatly reduced analysis time and the time required to reach the design objectives. This approach provides an integrated design workflow and facilitates parametric studies of advanced gas turbine blade component geometry, and the optimization of the component to meet targets of minimized aerodynamic drag force and maximized low-cycle fatigue life, goals crucial to the development of an advanced and efficient power generation gas turbine.


2022 ◽  
Vol 8 ◽  
Author(s):  
Xinmin Fu ◽  
Ya Fan ◽  
Yajuan Han ◽  
Jiafu Wang ◽  
Zhuangzhuang Wang ◽  
...  

The integration of the metasurface and antenna has brought new vitality to function integration and performance improvement for metasurfaces. In this study, we propose a radiation-scattering–integrated (RSI) design method of functional metasurfaces by incorporating antenna radiators into the substrates. The antenna radiators can also be considered as a band-stop frequency selective surface (FSS) embedded within the dielectric substrate, which adds up to the degree of freedom (DOF) in tailoring electromagnetic (EM) properties of the substrate. In this way, not only radiation function is added to the metasurfaces but also the original scattering-manipulation function is augmented. As an example, we apply this method to the design of a metasurface that can achieve a high radiation gain in-band and low-RCS out-of-band simultaneously. An antenna array was first designed, which uses circular patches as the radiators. Then, the antenna array was used as the substrate of a typical polarization conversion (PC) metasurface. The circular patch lies between the ground plane and the PC meta-atom, providing optimal electrical substrate thickness for PC at two separate bands. By adjusting structural parameters, the operating band of the antenna array can be made to lie in between the two PC bands. In this way, the metasurface can simultaneously possess high-gain radiation function in-band and high-efficiency PC function for RCS reduction out-of-band. A prototype was fabricated and measured. Both the simulated and measured results show that the metasurface can achieve satisfactory radiation gain in-band and significant RCS reduction out of band. This work provides an alternative method of designing multi-functional metasurfaces, which may find applications in smart skins and others.


Author(s):  
И.А. Баранников ◽  
К.А. Бердников ◽  
Е.А. Ищенко ◽  
С.М. Фёдоров

Рассматривается метод геометрической дифракции и физической оптики, который является одним из самых точных и эффективных для решения крупных электродинамических задач. Для анализа характеристик процесса приводится его математическое описание, а также для сравнения с ним приведено описание метода конечного интегрирования, который является наиболее популярным и эффективным для малых объектов. Так показано, что применение метода МКИ невозможно для крупных объектов, так как в процессе сеточного разбиения происходит создание слишком большого числа ячеек для расчета, что значительно усложняет процедуру анализа. Для оценки эффективности и точности метода было произведено моделирование антенного элемента, который установлен на корабле-носителе. Так, характеристики излучателя рассчитывались с использованием метода конечного интегрирования, после чего характеристики диаграмм направленности передавались в проект с кораблем, затем производилось моделирование с использованием метода SBR. Итоговые результаты моделирования показали высокую эффективность и точность метода, а возможность установки шага сканирования позволяет управлять временем моделирования, однако стоит учитывать, что слишком большой шаг приводит к снижению точности анализа The article discusses the method of geometric diffraction and physical optics, which is one of the most accurate and effective for solving large electrodynamic problems. To analyze the characteristics of the process, we give its mathematical description and, for comparison, a description of the final integration method, which is the most popular and effective for small objects. Thus, we show that the application of the MCI method is impossible for large objects since in the process of grid division, too many cells are created for the calculation, which significantly complicates the analysis procedure. To assess the effectiveness and accuracy of the method, we simulated the antenna element, which is installed on the carrier ship. We calculated the characteristics of the emitter using the method of finite integration, after which we transferred the characteristics of the radiation patterns to the project with the ship, then we carried out the simulation using the SBR method. The final results of modeling showed high efficiency and accuracy of the method, and the ability to set the scanning step allows you to control the simulation time, however, it should be borne in mind that too large a step leads to a decrease in the accuracy of the analysis.


2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Haining Xiao ◽  
Xing Wu ◽  
Yong Zeng ◽  
Jingjing Zhai

In the current industrial fields, automatic guided vehicles (AGVs) are widely employed to constitute the flexible manufacturing system (FMS), owing to their great advantages of routing flexibility and high efficiency. However, one main challenge lies in the coupling process of the design problem of the unidirectional guide-path network (UGN) and the task scheduling problem of AGVs. To reduce the complexity, most pertinent literatures only handle these problems one by one, based on the stepwise design methods, thereby neglecting the constraint conditions and the optimization objectives caused by the FMS environment. The motivation of the paper is to bring the coupling factors into the integrated design and solution process. Firstly, an integrated design model of designing UGN and scheduling AGVs simultaneously is proposed, with the objective of minimizing the makespan (i.e., the maximum completion time of all handling tasks), in the consideration of the practical constraints, e.g., the job handling and processing sequence constraints and the AGV number constraint. Secondly, a dual-population collaborative evolutionary genetic algorithm (CEGA) is developed to solve the problems of designing and scheduling in a parallel way. The solutions of the integrated model, i.e., the potential strongly connected UGN and the feasible processing and handling sequence, are, respectively, coded as two different subpopulations with independent and concurrent evolution processes. The neighbourhood search operation, the niche technique, and the elitism strategy are combined to improve the convergence speed and maintain the population diversity. The experimental results show that the integrated design model can formulate the problem more accurately, and the CEGA algorithm is computationally efficient with high solution quality.


2021 ◽  
Author(s):  
Qinghan Zeng ◽  
Jia Wang ◽  
Xin Li ◽  
Yangyuan Ou ◽  
Wenchao He ◽  
...  

Abstract Metal-organic frameworks (MOFs) have attracted intensive study as solid electrolytes (SEs) in recent years, especially on facilitating ion transport with functionalized channels. However, MOF particles work separately in SEs and numerous interfaces hinder the high-efficiency ion transport, which lowers the performance of solid-state batteries (SSBs) especially at high C-rate. Herein, we constructed continuous ion pathways by integration of MOFs into a 3D interconnected network. Particle arrays of a newly developed MOF (Zr-BPDC-2SO3H) which has single ion transport ability were grown on the bacterial cellulose (BC) nanofibers to provide a linear ion transport network. The interconnected MOFs network exhibits higher ionic conductivity of 7.88 × 10− 4 S cm− 1 at 25 ℃, single ion transport ability (ʈLi+=0.88), wide electrochemical window up to 5.15 V, excellent interface compatibility and capability for supressing lithium dendrites. Most importantly, the SSB fabricated with the interconnected MOFs network shows more than 100% improved specific capacity than the SSB without integration and stable cycling performance at 3 C. This work demonstrates the effectiveness of integrated design and paves new way for developing high-performance SEs based on porous ion conductors.


Author(s):  
T. Sato ◽  
S. Aoki ◽  
H. Mori

The characteristics and experiences of the gas turbine interactive design system, TDSYS, are described. The design of high performance advanced gas turbines requires complex trade-off analyses for optimization and hence it is necessary to use a highly efficient and accurate computerised integrated design system to complete the laborious design jobs in a short time. TDSYS is an interactive design system which makes extensive use of computer graphics and enables the designers to complete a gas turbine blade design systematically in a very short time. TDSYS has been developed and continuously improved over a period of ten years. The system has been used for the complete and retrofit design of many gas turbines including Mitsubishi MW701 and AGTJ-100A which is a high efficiency reheat gas turbine now being developed under a Japanese national project. In this paper, typical design samples of high temperature turbines are also presented.


Author(s):  
О. Г. Гребеніков ◽  
О. Д. Донець ◽  
С. В. Трубаєв ◽  
А. С. Чумак

A method of general design of regional passenger planes for transportation of passengers, baggage, mail and cargo on domestic and international airlines with the possibility of operating on airfields with concrete and prepared unpaved runways is proposed. Airplane is designed to replace the outdated Tu-134 passenger aircraft in the fleet of airlines of the CIS and other countries. The concept of creating an aircraft using integrated design systems has been developed. The effect of the aircraft parameters on the aerodynamic and mass characteristics was taken into account, subject to the requirements for layout and flight safety. The range of variation of the aircraft modifications parameters has been determined. The method has been tested by comparing the obtained parameters with the regional passenger aircraft of the Antonov State Enterprise.The aircraft features a modern aerodynamic configuration and efficient engines. Modern flight and navigation equipment and radio communication equipment, the use of multifunctional indicators, electrical distant flight control system allowing them to be used on any airways, in simple and complex meteorological conditions, day and night, and on routes with high flight intensity at high comfort level of passengers and crew.Passenger comfort is provided at the average level of long-haul aircraft, and is achieved by a rational layout and composition of service rooms, deep ergonomic optimization of the overall and individual space of the passenger compartment. The aircraft fully complies with the AP-25 airworthiness standards.The main technical characteristics of the aircraft are comparable to the characteristics of the analogue aircraft of Embraer and Bombardier companies. In addition, the aircraft has several advantages, such as the ability to operate on aerodromes with poorly prepared and unpaved runways, the presence of a door-ramp, high engine safety from damage by foreign objects, a high level of passenger comfort and large luggage racks, high efficiency of operation; high level of competitiveness in the global market


2019 ◽  
Vol 2019 ◽  
pp. 1-16
Author(s):  
Guang Sun ◽  
Yi Liu ◽  
Taolin Liu ◽  
Hu Yang

In this paper, a compact, wideband, and high-efficiency substrate integrated waveguide (SIW) feeding cavity-backed aperture-coupled magneto-electric (ME) dipole antenna element and its array are proposed. Firstly, an SIW cavity-backed and a modified bowtie dipole are designed for the antenna element which makes it possess a high gain and wide impedance bandwidth. The antenna element covers an impedance bandwidth of 66.3% from 10.7 to 21.3 GHz with a peak gain of 10.3 dBi. Secondly, a 4 × 4 array is designed using the proposed antenna element. And a full-corporate substrate integrated waveguide feeding network is introduced to excite the array elements for the antenna application with wide bandwidth and high efficiency. For validation, a prototype of 4 × 4 array is fabricated by standard printed circuit board (PCB) facilities and further measured. The measured −10 dB impedance bandwidth of the proposed 4 × 4 antenna array is 30% (12.75–17.25 GHz) with its gain being 18.2–20.9 dBi within the entire band. The measured maximum aperture efficiency of the antenna array is 94% at 14.92 GHz. Notably, the measured results agree well with simulations, and it shows great advantages over other similar antennas on efficiency and bandwidth.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Bo Zhao ◽  
Sid Assawaworrarit ◽  
Parthiban Santhanam ◽  
Meir Orenstein ◽  
Shanhui Fan

AbstractDirect current (DC) converters play an essential role in electronic circuits. Conventional high-efficiency DC voltage converters, especially step-up type, rely on switching operation, where energy is periodically stored within and released from inductors and/or capacitors connected in a variety of circuit topologies. Since these energy storage components, especially inductors, are fundamentally difficult to scale down, miniaturization of switching converters proves challenging. Furthermore, the resulting switching currents produce significant electromagnetic noise. To overcome the limitations of switching converters, photonic transformers, where voltage conversion is achieved through light emission and detection processes, have been demonstrated. However, the demonstrated efficiency is significantly below that of the switching converter. Here we perform a detailed balance analysis and show that with a monolithically integrated design that enables efficient photon transport, the photonic transformer can operate with a near-unity conversion efficiency and high voltage conversion ratio. We validate the theory with a transformer constructed with off-the-shelf discrete components. Our experiment showcases near noiseless operation and a voltage conversion ratio that is significantly higher than obtained in previous photonic transformers. Our findings point to the possibility of a high-performance optical solution to miniaturizing DC power converters and improving the electromagnetic compatibility and quality of electrical power.


Sign in / Sign up

Export Citation Format

Share Document