Detection of Sub-Design Rule Shorts for Process Development in Advanced Technology Nodes

2017 ◽  
Vol 30 (4) ◽  
pp. 418-425 ◽  
Author(s):  
Ming Lei ◽  
Kevin T. Wu
Author(s):  
R. Ross ◽  
K. Ly ◽  
M. de la Bardonnie ◽  
L.F.Tz. Kwakman ◽  
F. Lorut ◽  
...  

Abstract Given the ever increasing complexity of conducting failure analysis on today's latest generation manufacturing processes, the authors have investigated and implemented OBIRCH techniques into process development failure analysis practices. They describe their applications of OBIRCH to 120, 90, and 65 nm samples and their methods for interpreting the results. The OBIRCH technique has the ability to address faults within most structure types and quickly give information on a number of failing sites. It has proven itself as a necessary tool for failure analysis at advanced technology nodes, where fault characterization is getting difficult due to extremely small critical dimensions. The results obtained using the OBIRCH tool have been excellent on 120nm and initial 90nm results. The authors have not yet analyzed enough 65nm samples to form any type of conclusion regarding the tools ability at this technology node.


Author(s):  
DongKwon Jeong ◽  
JuHyeon Ahn ◽  
SangIn Lee ◽  
JooHyuk Chung ◽  
ByungLyul Park ◽  
...  

Abstract This paper presents the problems, the solutions, and the development state of the novel 0.18 μm Cu Metal Process through failure analysis of the Alpha CPU under development at Samsung Electronics. The presented problems include : “Via Bottom Lifting” induced by the Cu Via void, “Via Bottom dissociation” due to the IMD stress, “Via side dissociation” due to the poor formation of the Barrier Metal, “Via short/not-open failure” due to the IMD lifting, and Cu metal Corrosion/Loss. The analysis was carried out on the Via Contact Test Chain Patterns, using the “Electron (ION) Charge Up” method. After carefully analyzing each of the failure types, process improvement efforts followed. As a result, the pass rate of the via contact Rc was brought up from a mere 20% to 95%, and the device speed higher than 1.1 GHz was achieved, which surpasses the target speed of 1 GHz.


Author(s):  
Ramya Yeluri ◽  
Ravishankar Thirugnanasambandam ◽  
Cameron Wagner ◽  
Jonathan Urtecho ◽  
Jan M. Neirynck

Abstract Laser voltage probing (LVP) has been extensively used for fault isolation over the last decade; however fault isolation in practice primarily relies on good-to-bad comparisons. In the case of complex logic failures at advanced technology nodes, understanding the components of the measured data can improve accuracy and speed of fault isolation. This work demonstrates the use of second harmonic and thermal effects of LVP to improve fault isolation with specific examples. In the first case, second harmonic frequency is used to identify duty cycle degradation. Monitoring the relative amplitude of the second harmonic helps identify minute deviations in the duty cycle with a scan over a region, as opposed to collecting multiple high resolution waveforms at each node. This can be used to identify timing degradation such as signal slope variation as well. In the second example, identifying abnormal data at the failing device as temperature dependent effect helps refine the fault isolation further.


2012 ◽  
Author(s):  
Jürgen Faul ◽  
Jan Hoentschel ◽  
Maciej Wiatr ◽  
Manfred Horstmann

2019 ◽  
Vol 18 (1) ◽  
pp. 269-274
Author(s):  
Hui-Jung Wu ◽  
Wen Wu ◽  
Roey Shaviv ◽  
Mandy Sriram ◽  
Anshu Pradhan ◽  
...  

2015 ◽  
Vol 2015 (1) ◽  
pp. 000001-000005 ◽  
Author(s):  
R. Beica ◽  
A. Ivankovic ◽  
T. Buisson ◽  
S. Kumar ◽  
J. Azemar

The semiconductor industry, for more than five decades, has followed Moore's law and was driven by miniaturization of the transistors, scaling the CMOS technology to smaller and more advanced technology nodes while, at the same time, reducing the cost. The industry is reaching now limitations in continuing this scaling process in cost effective way. While technology nodes continue to be developed and innovative solutions are being proposed, the investment required to bring such technologies to production are significantly increasing. To overcome these limitations, new packaging technologies have been developed, enabling integration of more performing as well as various type of devices within the same package. This paper will provide an overview of current trends seen in the industry across all the packaging platforms (WLCSP1, FanOut2, Embedded Die2, Flip Chip3 and 3DIC4). Challenges, applications, positioning of the different packaging technologies by market segments (from low end to high end applications) and changes of the markets and drivers, growth rates and roadmaps will be presented. Global capacities and demands and the landscape of the packaging industry will be reviewed. Examples of teardowns to illustrate the latest packaging techniques for various devices used in latest products will be included.


2015 ◽  
Vol 62 (6) ◽  
pp. 2585-2591 ◽  
Author(s):  
B. L. Bhuva ◽  
N. Tam ◽  
L. W. Massengill ◽  
D. Ball ◽  
I. Chatterjee ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document