Predicting the impact of in vitro fertilisation and other forms of assisted conception on perinatal and infant mortality in England and Wales: examining the role of multiplicity

2006 ◽  
Vol 113 (6) ◽  
pp. 738-741 ◽  
Author(s):  
L Oakley ◽  
P Doyle
Cancers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2999
Author(s):  
Deborah Reynaud ◽  
Roland Abi Nahed ◽  
Nicolas Lemaitre ◽  
Pierre-Adrien Bolze ◽  
Wael Traboulsi ◽  
...  

The inflammatory gene NLRP7 is the major gene responsible for recurrent complete hydatidiform moles (CHM), an abnormal pregnancy that can develop into gestational choriocarcinoma (CC). However, the role of NLRP7 in the development and immune tolerance of CC has not been investigated. Three approaches were employed to define the role of NLRP7 in CC development: (i) a clinical study that analyzed human placenta and sera collected from women with normal pregnancies, CHM or CC; (ii) an in vitro study that investigated the impact of NLRP7 knockdown on tumor growth and organization; and (iii) an in vivo study that used two CC mouse models, including an orthotopic model. NLRP7 and circulating inflammatory cytokines were upregulated in tumor cells and in CHM and CC. In tumor cells, NLRP7 functions in an inflammasome-independent manner and promoted their proliferation and 3D organization. Gravid mice placentas injected with CC cells invalidated for NLRP7, exhibited higher maternal immune response, developed smaller tumors, and displayed less metastases. Our data characterized the critical role of NLRP7 in CC and provided evidence of its contribution to the development of an immunosuppressive maternal microenvironment that not only downregulates the maternal immune response but also fosters the growth and progression of CC.


2010 ◽  
Vol 54 (6) ◽  
pp. 2345-2353 ◽  
Author(s):  
Nicolas A. Margot ◽  
Craig S. Gibbs ◽  
Michael D. Miller

ABSTRACT Bevirimat (BVM) is the first of a new class of anti-HIV drugs with a novel mode of action known as maturation inhibitors. BVM inhibits the last cleavage of the Gag polyprotein by HIV-1 protease, leading to the accumulation of the p25 capsid-small peptide 1 (SP1) intermediate and resulting in noninfectious HIV-1 virions. Early clinical studies of BVM showed that over 50% of the patients treated with BVM did not respond to treatment. We investigated the impact of prior antiretroviral (ARV) treatment and/or natural genetic diversity on BVM susceptibility by conducting in vitro phenotypic analyses of viruses made from patient samples. We generated 31 recombinant viruses containing the entire gag and protease genes from 31 plasma samples from HIV-1-infected patients with (n = 21) or without (n = 10) prior ARV experience. We found that 58% of the patient isolates tested had a >10-fold reduced susceptibility to BVM, regardless of the patient's ARV experience or the level of isolate resistance to protease inhibitors. Analysis of mutants with site-directed mutations confirmed the role of the V370A SP1 polymorphism (SP1-V7A) in resistance to BVM. Furthermore, we demonstrated for the first time that a capsid polymorphism, V362I (CA protein-V230I), is also a major mutation conferring resistance to BVM. In contrast, none of the previously defined resistance-conferring mutations in Gag selected in vitro (H358Y, L363M, L363F, A364V, A366V, or A366T) were found to occur among the viruses that we analyzed. Our results should be helpful in the design of diagnostics for prediction of the potential benefit of BVM treatment in HIV-1-infected patients.


Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Christina Grothusen ◽  
Harald Schuett ◽  
Stefan Lumpe ◽  
Andre Bleich ◽  
Silke Glage ◽  
...  

Introduction: Atherosclerosis is a chronic inflammatory disease of the cardiovascular system which may result in myocardial infarction and sudden cardiac death. While the role of pro-inflammatory signaling pathways in atherogenesis has been well characterized, the impact of their negative regulators, e.g. suppressor of cytokine signaling (SOCS)-1 remains to be elucidated. Deficiency of SOCS-1 leads to death 3 weeks post-partum due to an overwhelming inflammation caused by an uncontrolled signalling of interferon-gamma (IFNγ). This phenotype can be rescued by generating recombination activating gene (rag)-2, SOCS-1 double knock out (KO) mice lacking mature lymphocytes, the major source of IFNγ. Since the role of SOCS-1 during atherogenesis is unknown, we investigated the impact of a systemic SOCS-1 deficiency in the low-density lipoprotein receptor (ldlr) KO model of atherosclerosis. Material and Methods: socs-1 −/− /rag-2 −/− deficient mice were crossed with ldlr-KO animals. Mice were kept under sterile conditions on a normal chow diet. For in-vitro analyses, murine socs-1 −/− macrophages were stimulated with native low density lipoprotein (nLDL) or oxidized (ox)LDL. SOCS-1 expression was determined by quantitative PCR and western blot. Foam cell formation was determined by Oil red O staining. Results: socs-1 −/− /rag-2 −/− /ldlr −/− mice were born according to mendelian law. Tripel-KO mice showed a reduced weight and size, were more sensitive to bacterial infections and died within 120 days (N=17). Histological analyses revealed a systemic, necrotic, inflammation in Tripel-KO mice. All other genotypes developed no phenotype. In-vitro observations revealed that SOCS-1 mRNA and protein is upregulated in response to stimulation with oxLDL but not with nLDL. Foam cell formation of socs-1 −/− macrophages was increased compared to controls. Conclusion: SOCS-1 seemingly controls critical steps of atherogenesis by modulating foam cell formation in response to stimulation with oxLDL. SOCS-1 deficiency in the ldlr-KO mouse leads to a lethal inflammation. These observations suggest a critical role for SOCS-1 in the regulation of early inflammatory responses in atherogenesis.


Nutrients ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 3198 ◽  
Author(s):  
Francesco Pecora ◽  
Federica Persico ◽  
Alberto Argentiero ◽  
Cosimo Neglia ◽  
Susanna Esposito

Viral infections are a leading cause of morbidity and mortality worldwide, and the importance of public health practices including handwashing and vaccinations in reducing their spread is well established. Furthermore, it is well known that proper nutrition can help support optimal immune function, reducing the impact of infections. Several vitamins and trace elements play an important role in supporting the cells of the immune system, thus increasing the resistance to infections. Other nutrients, such as omega-3 fatty acids, help sustain optimal function of the immune system. The main aim of this manuscript is to discuss of the potential role of micronutrients supplementation in supporting immunity, particularly against respiratory virus infections. Literature analysis showed that in vitro and observational studies, and clinical trials, highlight the important role of vitamins A, C, and D, omega-3 fatty acids, and zinc in modulating the immune response. Supplementation with vitamins, omega 3 fatty acids and zinc appears to be a safe and low-cost way to support optimal function of the immune system, with the potential to reduce the risk and consequences of infection, including viral respiratory infections. Supplementation should be in addition to a healthy diet and fall within recommended upper safety limits set by scientific expert bodies. Therefore, implementing an optimal nutrition, with micronutrients and omega-3 fatty acids supplementation, might be a cost-effective, underestimated strategy to help reduce the burden of infectious diseases worldwide, including coronavirus disease 2019 (COVID-19).


Reproduction ◽  
2020 ◽  
Vol 160 (5) ◽  
pp. 725-735
Author(s):  
Julieta Gabriela Hamze ◽  
María Jiménez-Movilla ◽  
Raquel Romar

The role of specific zona pellucida (ZP) glycoproteins in gamete interaction has not yet been elucidated in many species. A recently developed 3D model based on magnetic sepharose beads (B) conjugated to recombinant ZP glycoproteins (BZP) and cumulus cells (CBZP) allows the study of isolated ZP proteins in gamete recognition studies. The objective of this work was to study the role of porcine ZP2, ZP3 and ZP4 proteins in sperm binding, cumulus cell adhesion and acrosome reaction triggering. ZP protein-bound beads were incubated with fresh ejaculated boar spermatozoa and isolated cumulus cells for 24 h. The number of sperm bound to the beads, the acrosomal shrouds (presence of acrosomal content) on the bead’s surface, and the acrosome integrity (by means of PNA-FITC lectin) in bound and unbound sperm were studied. Finally, in vitro matured porcine oocytes mixed with BZP2 were inseminated in vitro using fresh sperm and fertilisation results evaluated. Over 60% of beads had at least one sperm bound after 2 h of coincubation. ZP2-beads (BZP2) and cumulus-ZP2-bead complexes (CBZP2) reached the highest number of sperm per bead, whereas BZP3 and BZP4 models showed the highest number of unbound reacted sperm cells and acrosomal shrouds. Fertilisation efficiency and monospermy rate increased when oocytes were fertilised in the presence of BZP2. We, therefore, conclude that in pigs, it is mainly ZP2 that is involved in sperm-ZP binding whereas ZP3 and ZP4 induce acrosome reaction. Using magnetic sepharose ZP2-bound beads might be a valuable tool to improve the fertilisation rate in pigs.


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
Y Liu ◽  
C Jones ◽  
K Coward

Abstract Study question What is the mechanism of embryo hatching? Will laser-assisted zona pellucida (ZP) drilling alter the embryonic transcriptome? Summary answer Hatching is an ATP-dependent process. Hatching is also associated with Rho-mediated signaling. Laser-assisted ZP drilling might cause alternation in embryo metabolism. What is known already Embryo hatching is a vital process for early embryo development and implantation. Animal data suggests that hatching is the result of multiple factors, such as mechanical pressure, protease activation, and the regulation of maternal secretions. However, little is known about the regulatory signaling mechanisms and the molecules involved. In addition, despite the extensive use of laser-assisted ZP drilling in the clinic, the safety profile of this technique at molecular level is very sparse. The impact of this technique on the embryonic transcriptome has not been studied systematically. Study design, size, duration Eighty mouse embryos were randomly divided into a laser ZP drilling group (n = 40) and an untreated group (n = 40). After treatment, embryos were cultured in vitro for two days. Then, hatching blastocyst (n = 8) and pre-hatching blastocyst (n = 8) from the untreated group, and the hatching blastocyst from the treatment group (n = 8) were processed for RNA sequencing (RNA-seq). Participants/materials, setting, methods Cryopreserved 8-cell stage mouse embryos (B6C3F1 × B6D2F1) were thawed, and a laser was used to drill the embryo ZP in the treatment group. Next, the treated and untreated embryos were individually cultured in vitro to the E4.5 blastocyst stage. The resulting blastocysts were lysed individually and used for subsequent cDNA library preparation and RNA-seq. Following data quality control and alignment, the RNA-seq data were processed for differentially expressed gene analysis and downstream functional analysis. Main results and the role of chance According to the RNA-seq data, 275 differentially expressed genes (DEGs) (230 up-regulated and 45 down-regulated, adjusted P < 0.05) were identified when comparing hatching and pre-hatching blastocysts in the control groups. Analysis suggested that the trophectoderm is the primary cell type involved in hatching, and revealed the potential molecules causing increased blastocyst hydrostatic pressure (Aqp3 and Cldn4). Functional enrichment analysis suggested that ATP metabolism and protein synthesis were activated in hatching blastocysts. DEGs were found to be significantly enriched in several gene ontology terms, particularly in terms of the organization of the cytoskeleton and actin polymerisation (P < 0.0001). Furthermore, according to QIAGEN ingenuity pathway analysis results, Rho signaling was implicated in blastocyst hatching (Actb, Arpc2, Cfl1, Myl6, Pfn1, Rnd3, Septin9, z-score=2.65, P < 0.0001). Moreover, the potential role of hormones (estrogen (z-score=2.24) and prolactin (z-score=2.4)) and growth factors (AGT (z-score=2.41) and FGF2 (z-score=2.213)) were implicated in the hatching process as indicated by the upstream regulator analysis. By comparing the transcriptome between laser-treated and untreated hatching blastocysts, 47 DEGs were identified (adjusted P < 0.05) following laser-assisted ZP drilling. These genes were enriched in metabolism-related pathways (P < 0.05), including the lipid metabolism pathway (Mvd, Mvk, Aacs, Gsk3a, Pik3c2a, Aldh9a1) and the xenobiotic metabolism pathway (Aldh18a1, Aldh9a1, Keap1, and Pik3c2a). Limitations, reasons for caution Findings in mouse embryos may not be fully representative of human embryos. Furthermore, the mechanism of hatching revealed here might only reflect the hatching process of embryos in vitro. Further studies are now necessary to confirm these findings in different conditions and species to determine their clinical significance. Wider implications of the findings: Our study profiled the mouse embryo transcriptome during in vitro hatching, identified potential key genes and mechanisms for future study. In addition, for the first time, we revealed the impact of laser-assisted ZP drilling on the transcriptome, this may help us to assess and improve the existing technique. Trial registration number Not applicable


2021 ◽  
pp. 1-15
Author(s):  
Akrm Ghergab ◽  
Nisha Mohanan ◽  
Grace Saliga ◽  
Ann Karen C. Brassinga ◽  
David Levin ◽  
...  

Pseudomonas chlororaphis PA23 is a biocontrol agent capable of protecting canola against the fungal pathogen Sclerotinia sclerotiorum. In addition to producing antifungal compounds, this bacterium synthesizes and accumulates polyhydroxyalkanoate (PHA) polymers as carbon and energy storage compounds. Because the role of PHA in PA23 physiology is currently unknown, we investigated the impact of this polymer on stress resistance, adherence to surfaces, and interaction with the protozoan predator Acanthamoeba castellanii. Three PHA biosynthesis mutants were created, PA23phaC1, PA23phaC1ZC2, and PA23phaC1ZC2D, which accumulated reduced PHA. Our phenotypic assays revealed that PA23phaC1ZC2D produced less phenazine (PHZ) compared with the wild type (WT) and the phaC1 and phaC1ZC2 mutants. All three mutants exhibited enhanced sensitivity to UV irradiation, starvation, heat stress, cold stress, and hydrogen peroxide. Moreover, motility, exopolysaccharide production, biofilm formation, and root attachment were increased in strains with reduced PHA levels. Interaction studies with the amoeba A. castellanii revealed that the WT and the phaC1 and phaC1ZC2 mutants were consumed less than the phaC1ZC2D mutant, likely due to decreased PHZ production by the latter. Collectively these findings indicate that PHA accumulation enhances PA23 resistance to a number of stresses in vitro, which could improve the environmental fitness of this bacterium in hostile environments.


2013 ◽  
Vol 33 (suppl_1) ◽  
Author(s):  
Paresa Taghavie-Moghadam ◽  
Matthew Butcher ◽  
Mark Kaplan ◽  
Jerry Nadler ◽  
Elena Galkina

T helper 1 (Th1) cells constitute the majority of plaque infiltrating IFNγ+ T cells and play a pro-atherogenic role. Th1 cells are induced via IFNγ-dependent activation of T-box expressed in T cells (Tbet) and/or IL-12-dependent activation of signal transducer and activator of transcription 4 (Stat4). While the role of Tbet in atherosclerosis is established, the impact of the IL-12/Stat4-dependent pathway is not well defined. To address the role of Stat4 in atherosclerosis, we bred Stat4-deficient mice with Apolipoprotein E-deficient mice to generate Stat4-/-Apoe-/- mice. Deficiency of Stat4 resulted in approximately a 70% reduction in the plaque burden for 34 week old Stat4-/-Apoe-/- mice fed a chow diet and in 12 week old Stat4-/-Apoe-/- mice fed a western diet there was approximately a 40% reduction in plaque burden, both compared with diet matched Apoe-/- controls females (p<0.001). To assess the effect of Stat4 on Th1 and Treg cell differentiation, we performed an in vitro polarization assay. Deficiency of Stat4 reduced differentiation of IFNγ+ Th1 cells in Th1 conditions, but supported the induction of Tregs in Treg polarizing conditions, confirming the importance of Stat4 in regulating the Th1/Treg balance. In contrast to the in vitro results, we found no difference in the expression of both IFNγ and Foxp3 amongst Stat4-/-Apoe-/- and Apoe-/- lymph nodes and splenic CD4+ T cells; suggesting that additional cytokines in vivo may induce IFNγ+Th1 and inhibit Treg differentiation. Stat4 deficiency also resulted in increased splenic B cell numbers and a slight increase in B1a dependent T15/E06 mRNA expression. Stat4 is a powerful regulator of chemokine expression within peripheral tissues. Adoptively transferred Apoe-/- B cells and CD11b+ cells migrated more efficiently into Stat4-/-Apoe-/- aortas compared to Apoe-/- recipients. However, percentages of macrophages, as determined by CD11b+CD68+ were reduced within the spleens and aortas of Stat4-/-Apoe-/- mice as compared to Apoe-/- controls at steady state conditions. In conclusion, Stat4 deficiency results in reduced atherosclerosis via the modulation of B cell function and aortic leukocyte content.


Sign in / Sign up

Export Citation Format

Share Document