Numerical Modelling of NOX Emissions and Flame Stabilization Mechanisms in Gas Turbine Burners Operating With Hydrogen and Hydrogen-Methane Blends

2021 ◽  
Author(s):  
Roberto Meloni ◽  
Matteo Cerutti ◽  
Alessandro Zucca ◽  
Maurizio Mazzoni
2017 ◽  
Vol 140 (2) ◽  
Author(s):  
Andreas Schwärzle ◽  
Thomas O. Monz ◽  
Andreas Huber ◽  
Manfred Aigner

Jet-stabilized combustion is a promising technology for fuel flexible, reliable, highly efficient combustion systems. The aim of this work is a reduction of NOx emissions of a previously published two-stage micro gas turbine (MGT) combustor (Zanger et al., 2015, “Experimental Investigation of the Combustion Characteristics of a Double-Staged FLOX-Based Combustor on an Atmospheric and a Micro Gas Turbine Test Rig,” ASME Paper No. GT2015-42313 and Schwärzle et al., 2016, “Detailed Examination of Two-Stage Micro Gas Turbine Combustor,” ASME Paper No. GT2016-57730), where the pilot stage (PS) of the combustor was identified as the main contributor to NOx emissions. The geometry optimization was carried out regarding the shape of the pilot dome and the interface between PS and main stage (MS) in order to prevent the formation of high-temperature recirculation zones. Both stages have been run separately to allow a detailed understanding of the flame stabilization within the combustor, its range of stable combustion, the interaction between both stages, and the influence of the modified geometry. All experiments were conducted at atmospheric pressure and an air preheat temperature of 650  °C. The flame was analyzed in terms of shape, length, and lift-off height, using OH* chemiluminescence (OH-CL) images. Emission measurements for NOx, CO, and unburned hydrocarbons (UHC) emissions were carried out. At a global air number of λ = 2, a fuel split variation was carried out from 0 (only PS) to 1 (only MS). The modification of the geometry leads to a decrease in NOx and CO emissions throughout the fuel split variation in comparison with the previous design. Regarding CO emissions, the PS operations are beneficial for a fuel split above 0.8. The local maximum in NOx emissions observed for the previous combustor design at a fuel split of 0.78 was not apparent for the modified design. NOx emissions were increasing, when the local air number of the PS was below the global air number. In order to evaluate the influence of the modified design on the flow field and identify the origin of the emission reduction compared to the previous design, unsteady Reynolds-averaged Navier–Stokes simulations were carried out for both geometries at fuel splits of 0.93 and 0.78, respectively, using the DLR (German Aerospace Center) in-house code turbulent heat release extension of the tau code (theta) with the k–ω shear stress transport turbulence model and the DRM22 (Kazakov and Frenklach, 1995, “DRM22,” University of California at Berkeley, Berkeley, CA, accessed Sept. 21, 2017, http://www.me.berkeley.edu/drm/) detailed reaction mechanism. The numerical results showed a strong influence of the recirculation zones on the PS reaction zone.


Author(s):  
Antonio Andreini ◽  
Bruno Facchini ◽  
Luca Mangani ◽  
Stefano Cocchi ◽  
Roberto Modi

Medium- and low-LHV fuels are receiving a continuously growing interest in stationary power applications. Besides that, since in many applications the fuels available at a site can be time by time of significantly different composition, fuel flexibility has become one of the most important requirements to be taken into account in developing power systems. A test campaign, aimed to provide a preliminary assessment of a small power gas turbine’s fuel flexibility, was carried over a full-scale GE10 prototypical unit, located at the Nuovo-Pignone manufacturing site, in Florence. The engine is a single shaft, simple cycle gas turbine designed for power generation applications, rated at 11 MW electrical power and equipped with a silos-type combustor. A variable composition gas fuel was obtained by mixing natural gas with CO2 to about 40% by vol. at engine base-load condition. Tests involved two different diffusive combustion systems: the standard version, designed for operation with natural gas, and a specific system designed for low-LHV fuels. Tests performed aimed to investigate both ignition limits and combustors’ performances, focusing on hot parts’ temperatures and pollutant emissions. Regarding NOx emissions, data collected during standard combustor’s tests were matched a simple scaling law (as a function of cycle parameters and CO2 concentration in the fuel mixture), which can be used in similar applications as a NOx predictive tool. In a following step, a CFD study was performed in order to verify in detail the effects of LHV reduction on flame structure and to compare measured and calculated NOx. STAR-CD™ code was employed as main CFD solver while turbulent combustion and NOx models were specifically developed and implemented using STAR’s user-subroutine features. Both models are based on classical laminar-flamelet approach. Three different operating points were considered at base-load conditions, varying CO2 concentration (0%, 20% and 30% vol. simulated). Numerical simulations point out the flexibility of the GE10 standard combustor to assure flame stabilization even against large variation of fuel characteristics. Calculated NOx emissions are in fairly good agreement with measured data confirming the validity of the adopted models.


Author(s):  
Roberto Meloni ◽  
Matteo Cerutti ◽  
Alessandro Zucca ◽  
Maurizio Mazzoni

Abstract Main objective of this paper is to assess the capability of numerical models in predicting NOx emissions and flame stabilization mechanisms of a heavy-duty gas turbine burner when operated with hydrogen and hydrogen-methane blends. Effort focused on the selection of the proper input to pre-tabulated Flamelet Generation Manifold combustion model. A dedicated sensitivity to laminar flame speed formulation has been performed as well, since it primarily affects flame stabilization through the closure term of the progress variable transport equation. Available NOx emissions data from full scale annular combustor rig test with hydrogen-air mixtures are presented first in this paper: test results have been used to validate the numerical setup for the reference geometry. Then, the model has been used to predict NOx emissions of alternative geometries in case of pure hydrogen, allowing screening of viable options to reduce the scope of a dedicated test campaign. Concerning flame stabilization mechanisms, simulations have been carried out for a reference geometry first: data from dedicated tests have been used to specialize the tool. Results of modified geometries are shown, to explore the effect of different fuel injection patterns or internal channel modifications. Based on the analysis outcomes, a discussion is provided regarding advantages and drawbacks of each proposed solution, as well as the ability of modelling setup in catching varied flame stabilization mechanisms.


Author(s):  
A. Schwärzle ◽  
T. O. Monz ◽  
M. Aigner

Jet-stabilized combustion is a promising technology for fuel flexible, reliable, highly efficient combustion systems. In this work, experiments have been carried out on a two-staged combustor, with a jet-stabilized main stage and a swirl-stabilized pilot stage. Both stages have been run separately to allow a more detailed understanding of the flame stabilization within the combustor and its range of stable operation. All experiments were conducted at atmospheric pressure and preheating temperatures of 650 °C. The air was fed to both stages of the combustor for all experiments. The flame was analyzed in terms of shape, length and lift-off height, using the OH* chemiluminescence signal detected by an ICCD-camera. Emission measurements for NOx, CO and UHC emissions were carried out. The pilot stage was examined at a local air number between 0.14 and 1.43, which corresponds to a global air number of 2.0 to 20.7. For lowest air numbers, the combustor works with the RQL principle with lowest emissions in pilot stage only operation. This is because the remaining fuel fed to the pilot stage mixes rapidly with the air from the main stage and reacts under lean conditions. The optimum operating range of the main stage is at global air numbers between 3 and 3.2 with a blow-off limit beyond λg = 4.0. At a global air number of λg = 2, a fuel split variation was carried out from 0 (only pilot stage) to 1 (only main stage). In combined operation and at higher fuel splits, the NOx emissions are reduced compared to the main stage only operation, while the opposing effect on NOx emissions was observed for lower fuel splits. CFD simulations of the combustor test rig showed higher residence times in the pilot stage compared to the main stage which facilitates higher NOx formation rates in the pilot stage. This could be improved by a geometry optimization. The operation of the pilot stage was beneficial at fuel splits above 90 %, especially concerning an extended operating range to higher global air numbers. In addition, the capability of the combustor to operate at higher thermal power inputs was investigated. Originally designed for the Turbec T100 micro gas turbine, the combustor was operated at 160% of the original design point. At a constant air number, this led to a decrease in NOx and to an increase in CO emissions, caused by shorter residence times in the combustion chamber at higher power input. An operation strategy of constant pilot air number increases the envelope of a stable operation regime further.


Author(s):  
Nicolas Demougeot ◽  
Jeffrey A. Benoit

The search for power plant sustainability options continues as regulating agencies exert more stringent industrial gas turbine emission requirements on operators. Purchasing power for resale, de-commissioning current capabilities altogether and repowering by replacing or converting existing equipment to comply with emissions standards are economic-driven options contemplated by many mature gas turbine operators. NRG’s Gilbert power plant based in Milford, NJ began commercial operation in 1974 and is fitted with four (4) natural gas fired GE’s 7B gas turbine generators with two each exhausting to HRSG’s feeding one (1) steam turbine generator. The gas turbine units, originally configured with diffusion flame combustion systems with water injection, were each emitting 35 ppm NOx with the New Jersey High Energy Demand Day (HEED) regulatory mandate to reduce NOx emissions to sub 10 ppm by May 1st, 2015. Studies were conducted by the operator to evaluate the economic viability & installation of environmental controls to reduce NOx emissions. It was determined that installation of post-combustion environmental controls at the facility was both cost prohibitive and technically challenging, and would require a fundamental reconfiguration of the facility. Based on this economic analysis, the ultra-low emission combustion system conversion package was selected as the best cost-benefit solution. This technical paper will focus on the ultra low emissions technology and key features employed to achieve these low emissions, a description of the design challenges and solution to those, a summary of the customer considerations in down selecting options and an overview of the conversion scope. Finally, a technical discussion of the low emissions operational flexibility will be provided including performance results of the converted units.


1981 ◽  
Vol 103 (1) ◽  
pp. 34-42 ◽  
Author(s):  
J. R. Shekleton

The Radial Engine Division of Solar Turbines International, an Operating Group of International Harvester, under contract to the U.S. Army Mobility Equipment Research & Development Command, developed and qualified a 10 kW gas turbine generator set. The very small size of the gas turbine created problems and, in the combustor, novel solutions were necessary. Differing types of fuel injectors, combustion chambers, and flame stabilizing methods were investigated. The arrangement chosen had a rotating cup fuel injector, in a can combustor, with conventional swirl flame stabilization but was devoid of the usual jet stirred recirculation. The use of centrifugal force to control combustion conferred substantial benefit (Rayleigh Instability Criteria). Three types of combustion processes were identified: stratified and unstratified charge (diffusion flames) and pre-mix. Emphasis is placed on five nondimensional groups (Richardson, Bagnold, Damko¨hler, Mach, and Reynolds numbers) for the better control of these combustion processes.


Author(s):  
D. A. Sullivan ◽  
P. A. Mas

The effect of inlet temperature, pressure, air flowrate and fuel-to-air ratio on NOx emissions from gas turbine combustors has received considerable attention in recent years. A number of semi-empirical and empirical correlations relating these variables to NOx emissions have appeared in the literature. They differ both in fundamental assumptions and in their predictions. In the present work, these simple NOx correlations are compared to each other and to experimental data. A review of existing experimental data shows that an adequate data base does not exist to evaluate properly the various NOx correlations. Recommendations are proposed to resolve this problem in the future.


Author(s):  
Chi-Rong Liu ◽  
Hsin-Yi Shih

The purpose of this study is to investigate the combustion and emission characteristics of syngas fuels applied in a micro gas turbine, which is originally designed for a natural gas fired engine. The computation results were conducted by a numerical model, which consists of the three-dimension compressible k–ε model for turbulent flow and PPDF (presumed probability density function) model for combustion process. As the syngas is substituted for methane, the fuel flow rate and the total heat input to the combustor from the methane/syngas blended fuels are varied with syngas compositions and syngas substitution percentages. The computed results presented the syngas substitution effects on the combustion and emission characteristics at different syngas percentages (up to 90%) for three typical syngas compositions and the conditions where syngas applied at fixed fuel flow rate and at fixed heat input were examined. Results showed the flame structures varied with different syngas substitution percentages. The high temperature regions were dense and concentrated on the core of the primary zone for H2-rich syngas, and then shifted to the sides of the combustor when syngas percentages were high. The NOx emissions decreased with increasing syngas percentages, but NOx emissions are higher at higher hydrogen content at the same syngas percentage. The CO2 emissions decreased for 10% syngas substitution, but then increased as syngas percentage increased. Only using H2-rich syngas could produce less carbon dioxide. The detailed flame structures, temperature distributions, and gas emissions of the combustor were presented and compared. The exit temperature distributions and pattern factor (PF) were also discussed. Before syngas fuels are utilized as an alternative fuel for the micro gas turbine, further experimental testing is needed as the modeling results provide a guidance for the improved designs of the combustor.


1982 ◽  
Vol 104 (1) ◽  
pp. 120-128 ◽  
Author(s):  
W. D. Clark ◽  
B. A. Folsom ◽  
W. R. Seeker ◽  
C. W. Courtney

The high efficiencies obtained in a combined gas-turbine/steam-turbine power cycle burning low Btu gas (LBG) make it a potentially attractive alternative to the high sulfur emitting direct coal-fired steam cycle. In the gasification process, much of the bound nitrogen in coal is converted to ammonia in the LBG. This ammonia is largely converted to nitrogen oxides (NOx) in conventional combustors. This paper examines the pressurized bench scale performance of reactors previously demonstrated to produce low NOx emissions in atmospheric laboratory scale experiments. LBG was synthesized in a catalytic reformer and fired in three reactors: a catalytic reactor, a diffusion flame, and a stirred reactor. Effects of scale, pressure, stoichiometry, residence time, and preheat were examined. Lowest NOx emissions were produced in a rich/lean series staged catalytic reactor.


Sign in / Sign up

Export Citation Format

Share Document