Packaging of Optical MEMS Devices

2003 ◽  
Vol 125 (3) ◽  
pp. 325-328 ◽  
Author(s):  
Yee L. Low ◽  
Ronald E. Scotti ◽  
David A. Ramsey ◽  
Cristian A. Bolle ◽  
Steven P. O’Neill ◽  
...  

Recently, optical MEMS devices have gained considerable attention in the telecommunications industry—particularly in the optical networking and switching arenas. Since optical MEMS are micro-systems which rely on high precision optics, electronics and mechanics working in close concert, these emerging devices pose some unique packaging challenges yet to be addressed by the general packaging industry. Optical MEMS packages often are required to provide both optical and electrical access, hermeticity, mechanical strength, dimensional stability, and long-term reliability. Hermetic optical access necessitates the use of metallized and anti-reflection coated windows, and ever-increasing electrical I/O count has prompted the use of higher density substrate/package technologies. Taking these requirements into consideration, we explore three ceramic packaging technologies, namely high-temperature co-fired ceramic (HTCC), low-temperature co-fired ceramic (LTCC), and thin-film ceramic technologies. In this paper, we describe some optical MEMS packages designed using these three technologies and discuss their substrate designs, package materials, ease of integration and assembly.

2001 ◽  
Vol 688 ◽  
Author(s):  
Marcus Hoffmann ◽  
Carsten Kügeler ◽  
Ulrich Böttger ◽  
Rainer Waser

AbstractPiezoelectric and electrostrictive materials are potential candidates for integrated micro systems. They can be used in cantilever laminated structures for different applications, e.g. active vibration control or agile transducers [1-3]. Due to the necessity of miniaturization of MEMS devices and the reduction of process costs and time, the use of chemical solution deposition (CSD) technique with microlithography and reactive ion etching (RIE) are essential.Within this work we used these techniques in combination with silicon bulk micro machining technique to fabricate piezoelectric Pb(Zr,Ti)O3 (PZT) and electrostrictive Pb(Mg1/3,Nb2/3)O3-PbTiO3 (PMN-PT) coated micro cantilevers with different lengths which can be used in micro switch or micro mirror applications. In general PMN shows no elastic hysteresis and a better aging behavior than PZT ceramics. Since the electrostrictive effect is smaller than the piezoelectric effect the tip deflection of PMN-PT coated beams is much lower. Cantilevers with two ceramic thin film layers and an internal electrode (bimorph) were designed and compared to such with single ceramic thin film layers (monomorph). For fabrication control and electrical characterization SEM, polarization hysteresis-, and CV-measurements were performed. Laser interferometry measurements were used to characterize the electromechanic performance of the ceramic thin films and cantilevers.


Author(s):  
S. W. Bishara ◽  
R. L. McReynolds

A household microwave oven with a frequency of 2.45 × 103 ±13 MHz and an output power of 1000 W is used to simulate short- and long-term aging of asphalt, and for annealing, prior to sampling, to remove steric (isothermal) hardening. A quartz petri dish holds the asphalt during microwave treatment, at atmospheric pressure. To simulate thin film oven (TFO) aging, a 10-g sample is microwaved for a total of 33 min. For 11 asphalts, the average difference in G*/sin δ, at limiting high temperature, between TFO and microwave aging is ±0.68 kPa. Simulating rolling thin-film oven (RTFO) aging is possible by microwaving for a total of 63 min. For 18 asphalts, the average difference in G*/sin δ, at limiting high temperature, between RTFO and microwave aging is ± 1.19 kPa. Aging by RTFO + pressure aging vessel (PAV) and TFO + PAV is simulated by microwaving for a total of 158 min. Microwave aging marginally underestimates long-term aging. For 18 asphalts, the average difference in intermediate temperature obtained after RTFO + PAV versus microwave aging is −2.8°C; for TFO + PAV versus microwave aging, the average difference is −2.7°C. Annealing for 2 hr at 150°C in a convection oven (conductive heating) is simulated by microwaving for a total of 27 min. The average difference in G*/sin δ between the two methods is ±0.24 kPa. Molecular size index (MSI, the ratio of first to second fraction from size exclusion chromatography) correlates with stiffness at low temperature. At intermediate temperature, tan δ remains practically unchanged until MSI reaches a minimum, then increases sharply. At limiting high temperature, G* does not correlate with MSI.


Author(s):  
R. E. Franck ◽  
J. A. Hawk ◽  
G. J. Shiflet

Rapid solidification processing (RSP) is one method of producing high strength aluminum alloys for elevated temperature applications. Allied-Signal, Inc. has produced an Al-12.4 Fe-1.2 V-2.3 Si (composition in wt pct) alloy which possesses good microstructural stability up to 425°C. This alloy contains a high volume fraction (37 v/o) of fine nearly spherical, α-Al12(Fe, V)3Si dispersoids. The improved elevated temperature strength and stability of this alloy is due to the slower dispersoid coarsening rate of the silicide particles. Additionally, the high v/o of second phase particles should inhibit recrystallization and grain growth, and thus reduce any loss in strength due to long term, high temperature annealing.The focus of this research is to investigate microstructural changes induced by long term, high temperature static annealing heat-treatments. Annealing treatments for up to 1000 hours were carried out on this alloy at 500°C, 550°C and 600°C. Particle coarsening and/or recrystallization and grain growth would be accelerated in these temperature regimes.


Alloy Digest ◽  
2010 ◽  
Vol 59 (1) ◽  

Abstract Kubota KNC-03 is a grade with a combination of high strength and excellent resistance to oxidation. These properties make this alloy suitable for long-term service at temperature up to 1250 deg C (2282 deg F). This datasheet provides information on physical properties, hardness, elasticity, tensile properties, and compressive strength as well as creep. It also includes information on high temperature performance as well as casting and joining. Filing Code: Ni-676. Producer or source: Kubota Metal Corporation, Fahramet Division. See also Alloy Digest Ni-662, April 2008.


Alloy Digest ◽  
2020 ◽  
Vol 69 (8) ◽  

Abstract ATI 6-2-4-2 is a near-alpha, high strength, titanium alloy that exhibits a good combination of tensile strength, creep strength, toughness, and long-term stability at temperatures up to 425 °C (800 °F). Silicon up to 0.1% frequently is added to improve the creep resistance of the alloy. This datasheet provides information on composition, physical properties, hardness, and tensile properties as well as creep. It also includes information on high temperature performance as well as forming, heat treating, machining, and joining. Filing Code: Ti-169. Producer or Source: ATI.


2020 ◽  
Vol 12 ◽  
Author(s):  
Fang Wang ◽  
Jingkai Wei ◽  
Caixia Guo ◽  
Tao Ma ◽  
Linqing Zhang ◽  
...  

Background: At present, the main problems of Micro-Electro-Mechanical Systems (MEMS) temperature detector focus on the narrow range of temperature detection, difficulty of the high temperature measurement. Besides, MEMS devices have different response characteristics for various surrounding temperature in the petrochemical and metallurgy application fields with high-temperature and harsh conditions. To evaluate the performance stability of the hightemperature MEMS devices, the real-time temperature measurement is necessary. Objective: A schottky temperature detector based on the metal/n-ZnO/n-Si structures is designed to measure high temperature (523~873K) for the high-temperature MEMS devices with large temperature range. Method: By using the finite element method (FEM), three different work function metals (Cu, Ni and Pt) contact with the n-ZnO are investigated to realize Schottky. At room temperature (298K) and high temperature (523~873K), the current densities with various bias voltages (J-V) are studied. Results: The simulation results show that the high temperature response power consumption of three schottky detectors of Cu, Ni and Pt decreases successively, which are 1.16 mW, 63.63 μW and 0.14 μW. The response temperature sensitivities of 6.35 μA/K, 0.78 μA/K, and 2.29 nA/K are achieved. Conclusion: The Cu/n-ZnO/n-Si schottky structure could be used as a high temperature detector (523~873K) for the hightemperature MEMS devices. It has a large temperature range (350K) and a high response sensitivity is 6.35 μA/K. Compared with traditional devices, the Cu/n-ZnO/n-Si Schottky structure based temperature detector has a low energy consumption of 1.16 mW, which has potential applications in the high-temperature measurement of the MEMS devices.


Proceedings ◽  
2021 ◽  
Vol 56 (1) ◽  
pp. 41
Author(s):  
Lida Khajavizadeh ◽  
Anita Lloyd Spetz ◽  
Mike Andersson

In order to investigate the necessary device improvements for high-temperature CO sensing with SiC metal insulator semiconductor field effect transistor (MISFET)-based chemical gas sensors, devices employing, as the gas-sensitive gate contact, a film of co-deposited Pt/Al2O3 instead of the commonly used catalytic metal-based contacts were fabricated and characterized for CO detection at elevated temperatures and different CO and O2 levels. It can be concluded that the sensing mechanism at elevated temperatures correlates with oxygen removal from the sensor surface rather than the surface CO coverage as observed at lower temperatures. The long-term stability performance was also shown to be improved compared to that of previously studied devices.


2021 ◽  
Author(s):  
Gokul Venugopalan ◽  
Deepra Bhattacharya ◽  
Subarna Kole ◽  
Cameron Ysidron ◽  
Polyxeni P. Angelopoulou ◽  
...  

Ionomer electrode binders are important materials for polymer electrolyte membrane (PEM) fuel cells and electrolyzers and have a profound impact on cell performance. Herein, we report the effect of two...


2018 ◽  
Vol 924 ◽  
pp. 854-857
Author(s):  
Ming Hung Weng ◽  
Muhammad I. Idris ◽  
S. Wright ◽  
David T. Clark ◽  
R.A.R. Young ◽  
...  

A high-temperature silicon carbide power module using CMOS gate drive technology and discrete power devices is presented. The power module was aged at 200V and 300 °C for 3,000 hours in a long-term reliability test. After the initial increase, the variation in the rise time of the module is 27% (49.63ns@1,000h compared to 63.1ns@3,000h), whilst the fall time increases by 54.3% (62.92ns@1,000h compared to 97.1ns@3,000h). The unique assembly enables the integrated circuits of CMOS logic with passive circuit elements capable of operation at temperatures of 300°C and beyond.


Sign in / Sign up

Export Citation Format

Share Document