Evaluation of the Effect of High Speed Machining on Tapping

1994 ◽  
Vol 116 (4) ◽  
pp. 457-462 ◽  
Author(s):  
J. S. Agapiou

This paper summarizes tapping characteristics at speeds as high as 9,000 rpm (180 m/min surface speed) as compared to traditional tapping done at speeds from 500 to 1,500 rpm (20–30 m/min). High speed tapping was achieved by synchronizing the spindle rotation and the feed motion of a specially built machine at extremely high speeds and acceleration/deceleration rates. This investigation analyzes the performance of roll and cut tap geometries in the high speed tapping of 319 aluminum. The torque required by the different tap geometries at several speeds and percent threads combination is evaluated. The relationship between pretapped hole diameter and minor diameter of the thread and the estimation of percent thread are analyzed. The thread quality generated at high speeds is also evaluated. It is shown that the cutting speed does not affect the steady state torque and the shear strength. The torque for roll forming taps is higher than that for cut taps. The shear strength of roll forming threads increased with percent thread.

2010 ◽  
Vol 97-101 ◽  
pp. 3108-3112
Author(s):  
Bing Yan ◽  
Chao Hui Xu ◽  
Wei Wang

The machining characteristics of hardened still for mould and die greatly affect the accuracy and productivity in industry. The physical modeling and simulation of ball end milling is investigated in this paper. The influence of cutting speed to the cutting mechanism in high speed cutting is taken into account and the momentum force of chip is introduced into the model. By analyzing the shape of the chips the relationship between the cutting speed and shear angle is obtained. The model has been tested on 718HH, with appropriate Seco tools. The validation shows that the adjustment between the model and the real force is adequate, both in shape and magnitude.


2009 ◽  
Vol 626-627 ◽  
pp. 71-74 ◽  
Author(s):  
Xue Feng Bi ◽  
G. Sutter ◽  
Gautier List ◽  
Yong Xian Liu

The tool-chip contact length, as an important parameter controlling the geometry of tool crater wear and understanding chip formation mechanism, is widely investigated in machining. The aim of this paper is to study the influence of chip curl on tool-chip contact length by means of experimental observations with high cutting speed. The relationship between tool-chip contact length, chip radius of curvature and uncut chip thickness was investigated. Experimental results show the effect of increasing spiral chip radius on tool-chip contact length with low uncut chip thickness in high speed machining.


Author(s):  
Muataz Al Hazza ◽  
Khadijah Muhammad

High speed machining has many advantages in reducing time to the market by increasing the material removal rate. However, final surface quality is one of the main challenges for manufacturers in high speed machining due to the increasing of flank wear rate. In high speed machining, the cutting zone is under high pressure associated with high temperature that lead to increasing of the flank wear rate in which affect the final quality of the machined surface. Therefore, one of the main concerns to the manufacturer is to predict the flank wear to estimate and predict the surface roughness as one of the main outputs of the machining processes. The aim of this study is to determine experimentally the optimum cutting parameters: depth of cut, cutting speed (Vc) and feed rate (f) that maintaining low flank wear (Vb). Taguchi method has been applied in this experiment. The Taguchi method has been universally used in engineering analysis.  JMP statistical analysis software is used to analyse statically the development of flank wear rate during high speed milling of hardened steel AISI D2 to 60 HRD. The experiment was conducted in the following boundaries: cutting speed 200-400 m/min, feed rate of 0.01-0.05 mm/tooth and depth of cut of 0.1-0.2 mm. Analysis of variance ANOVA was conducted as one of important tool for statistical analysis. The result showed that cutting speed is the most influential input factors with 70.04% contribution on flank wear.


2017 ◽  
Vol 889 ◽  
pp. 84-89
Author(s):  
Pandithevan Ponnusamy ◽  
Mullapudi Joshi

In high speed machining, to dynamically control the mechanical behaviour of the materials, it is essential to control temperature, stress and strain by appropriate speed, feed and depth of cut. In the present work, to predict the mechanical behaviour of Ti6Al4V and 316L steel bio-materials an explicit dynamic analysis with different cutting speeds was carried out. Orthogonal cutting of 316L steel and Ti6Al4V materials with 720 m/min, 900 m/min and 1200 m/min cutting speeds was performed, and the distribution of stress and temperature was investigated using Jonson-Cook material model. Additionally, the work aimed at determining the effect of cutting speed on work piece temperature, when cutting is carried out continuously. From the investigation, it was found that, while machining Ti6Al4V material, for the increase in cutting speed there was increase in tool-chip interface temperature. Specifically, this could found till the cutting speed 900 m/min. But, there was a decrease in tool-chip interface temperature for the increase in speed from 900 m/min to 1200 m/min. Similarly for 316L steel, the tool-chip interface temperature increased when increasing the cutting speed till 900 m/min. But reduction in temperature from 650 °C to 500 °C for steel and 1028 °C to 990 °C for Ti6Al4V were found, when the cutting speed increased from 900 m/min to 1200 m/min. The study can be used to conclude, at what temperature range the adoption of material with controlled shape and geometry is possible for potential applications like, prosthetic design and surgical instruments prior to fabrications.


Author(s):  
Roman V. Kazban ◽  
James J. Mason

Even though many models for machining exist, most of them are for low-speed machining, where momentum is negligible and material behavior is well approximated by quasi-static plastic constitutive laws. In machining at high speeds, momentum can be important and the strain rate can be exceedingly high. For these reasons, a fluid mechanics approach to understanding high-speed, very high-speed, and ultra-high-speed machining is attempted here. Namely, a potential flow solution is used to model the behavior of the material around a sharp tool tip during machining at high speeds. It is carefully argued that the potential flow solution is relevant and can be used as a first approximation to model the behavior of a metal during high-speed, very high-speed, or ultra-high-speed machining events; and at a minimum, the potential flow solution is qualitatively useful in understanding mechanics of machining at high speeds and above. Interestingly, the flow solution predicts that there is a stagnation point on the rake face, not at the tool tip as is usually assumed. Because the stagnation point is not at the tool tip, the flow solution predicts a significant amount of deformation in the workpiece resulting in large residual strains that may lead to a temperature rise on the finished surface.


2011 ◽  
Vol 188 ◽  
pp. 578-583 ◽  
Author(s):  
Toshiyuki Obikawa ◽  
Masahiro Anzai ◽  
Tsuneo Egawa ◽  
Norihiko Narutaki ◽  
Kazuhiro Shintani ◽  
...  

This paper describes strong nonlinearity in log V-log L relationship, which is often found in machining of supperalloys, titanium alloys, hardened steels, cast irons, etc. The nonlinearity plays an important and favorable role in extension of life-span cutting distance at higher cutting speeds; that is, in a certain range of cutting speed, life-span cutting distance increases with cutting speed. Results of tool wear in a sliding test and cutting experiments, which showed the evidences of strong nonlinearity, were investigated and the mechanisms causing the nonlinearity were discussed.


Author(s):  
Seizo Uematsu ◽  
Masana Kato

Abstract Finish roll forming under the constant center distance by forced feed of tool can be conceived as a method of eliminating errors in conventional form rolling under constant loads. This method generates a high-precision tooth profile by low-speed form rolling when a high rigid screw or cam is used as loading parts. In this study, the high-speed rolling conditions of this method for necessary to be applied in practical situations are discussed. The following conclusions are obtained. When the following design data are given (module, number of teeth, addendum modification coefficient, prescribed design precision, and material characteristics), the accuracy of rolled gear can be predicted from the relationship between the required feed for the tool and the theoretically calculated plastic deformation on the tooth profile. These conclusions are verified experimentally. For example, the tooth accuracy of rolled gears with module 5 can improve from JIS class 3 to JIS class 0 or 1 when the load Fmax is 4 to 5kN and the pitch line velocity is 7 m/min.


2014 ◽  
Vol 621 ◽  
pp. 75-81 ◽  
Author(s):  
You Xi Lin ◽  
Hua Lin ◽  
Zhen Wei Han

High speed cutting is an important means to improve the efficiency and the quality of machining mold steel, but the tool wear is one of the key factors restricting the increase of the cutting speed, leading to higher requirements for cutting tool materials. At present the researches of high-speed cutting of mold steel are mainly on the hardness mold steel, but less on P20 mold steel which hardness is 30-42HRC. This paper mainly studies the effect of cutting speed on wear property of TiAlN PVD coated tools when high-speed milling of P20 mold steels. The experiment was conducted using two different high cutting speeds under dry condition, 320m/min and 500m/min. Wear characterization of the rake and the flank surfaces as well as the collected chips were performed using scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX). It was found that at high speeds, the dominant wear mechanisms were oxidation wear and diffusion wear, followed by adhesive wear and melt wear; as the cutting speed increased, the wear surface area of rake face will be closer to the main cutting edge.


Author(s):  
Marcelo Ferreira Batista ◽  
Alessandro Roger Rodrigues ◽  
Reginaldo Teixeira Coelho

Cusps and scallops of hardened steel moulds produced by high-speed milling using a ball-nose end mill were mathematically modelled, characterised by microscopy and experimentally validated. The experimental results show that the part material is crushed or ploughed near the cutter centre, where the cutting speed is very low. This kinematic singularity, associated with tool feed, compresses and bends the ball-nose end mill axially. Because of this double effect, the end mill marks on the part at the end of the milling path cause surface damage and dimensional errors to the hardened mould. A mathematical model may predict the formation of the cusps and scallops and be of use in computer numerical control or computer-aided manufacturing programming to obtain the desired part topography.


2012 ◽  
Vol 565 ◽  
pp. 484-489
Author(s):  
Bing Wang ◽  
Zhan Qiang Liu ◽  
Qi Biao Yang

Analyzing mechanism of the chip formation is a significant way to understand the metal cutting process better. The characterization of serrated chip formation in high speed machining of hardened AISI1045 steel is investigated with the aid of optical microscopy and micro-hardness measurement in this paper. The chip morphology evolving from continuous one to serrated one with the cutting speed increasing from 100-1500m/min is observed. Compared with the continuous chip pattern, serrated chip has its particular characterization parameters. The characteristics of serration degree and the segmentation frequency of the serrated chip are presented. The micro-hardness at the adiabatic shear band of serrated chip is then measured. The results show that the serration degree and segmentation frequency of serrated chip have a tendency of enhancement with the cutting speed increasing. The micro-hardness along the adiabatic shear band increases with the cutting speed increasing due to severe strain hardening. With a critical speed at about 100-200m/min, micro-hardness decreases from the tool-chip interface to the free surface of the chip.


Sign in / Sign up

Export Citation Format

Share Document