An Approach to the First Passage Problem in Random Vibration

1983 ◽  
Vol 50 (3) ◽  
pp. 641-646 ◽  
Author(s):  
A. B. Mason ◽  
W. D. Iwan

The first passage problem for the response of a linear oscillator excited by a random excitation is considered. An approximate analytical technique is presented for calculation of the distribution of the time to first excursion across a symmetric double barrier. The approach may be applied to the case of nonstationary response to modulated Gaussian noise with nonwhite spectral density. Results for the limiting decay rate parameter are presented and are compared with those of other analytical methods and simulation results. The first passage probability is calculated for a system subjected to a suddenly applied white noise and the results also compared with those of other methods and computer simulations. The results of the proposed method show generally good agreement with simulation results.

2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Xichuan Liu ◽  
Taichang Gao ◽  
Yuntao Hu ◽  
Xiaojian Shu

In order to improve the measurement of precipitation microphysical characteristics sensor (PMCS), the sampling process of raindrops by PMCS based on a particle-by-particle Monte-Carlo model was simulated to discuss the effect of different bin sizes on DSD measurement, and the optimum sampling bin sizes for PMCS were proposed based on the simulation results. The simulation results of five sampling schemes of bin sizes in four rain-rate categories show that the raw capture DSD has a significant fluctuation variation influenced by the capture probability, whereas the appropriate sampling bin size and width can reduce the impact of variation of raindrop number on DSD shape. A field measurement of a PMCS, an OTT PARSIVEL disdrometer, and a tipping bucket rain Gauge shows that the rain-rate and rainfall accumulations have good consistencies between PMCS, OTT, and Gauge; the DSD obtained by PMCS and OTT has a good agreement; the probability of N0, μ, and Λ shows that there is a good agreement between the Gamma parameters of PMCS and OTT; the fitted μ-Λ and Z-R relationship measured by PMCS is close to that measured by OTT, which validates the performance of PMCS on rain-rate, rainfall accumulation, and DSD related parameters.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 735
Author(s):  
Songchen Wang ◽  
Xianchen Yang ◽  
Xinmei Li ◽  
Cheng Chai ◽  
Gen Wang ◽  
...  

The objective of this study was to investigate the wear characteristics of the U-shaped rings of power connection fittings, and to construct a wear failure prediction model of U-shaped rings in strong wind environments. First, the wear evolution and failure mechanism of U-shaped rings with different wear loads were studied by using a swinging wear tester. Then, based on the Archard wear model, the U-shaped ring wear was dynamically simulated in ABAQUS, via the Umeshmotion subroutine. The results indicated that the wear load has an important effect on the wear of the U-shaped ring. As the wear load increases, the surface hardness decreases, while plastic deformation layers increase. Furthermore, the wear mechanism transforms from adhesive wear, slight abrasive wear, and slight oxidation wear, to serious adhesive wear, abrasive wear, and oxidation wear with the increase of wear load. As plastic flow progresses, the dislocation density in ferrite increases, leading to dislocation plugs and cementite fractures. The simulation results of wear depth were in good agreement with the test value of, with an error of 1.56%.


1984 ◽  
Vol 106 (1) ◽  
pp. 29-35 ◽  
Author(s):  
P. Cawley

The susceptibility to bias error of two methods for computing transfer (frequency response) functions from spectra produced by FFT-based analyzers using random excitation has been investigated. Results from tests with an FFT analyzer on a single degree-of-freedom system set up on an analogue computer show good agreement with the theoretical predictions. It has been shown that, around resonance, the bias error in the transfer function estimate H2 (Syy/Sxy*) is considerably less than that in the more commonly used estimate, H1 (Sxy/Sxx). The record length, and hence the testing time, required for a given accuracy is reduced by over 50 percent if the H2 calculation procedure is used. The analysis has also shown that if shaker excitation is used on lightly damped structures with low modal mass, it is important to minimize the mass of the force gage and the moving element of the shaker.


2015 ◽  
Vol 645-646 ◽  
pp. 70-74 ◽  
Author(s):  
Min Zhong ◽  
Yu Hang Zhao ◽  
Shou Mian Chen ◽  
Ming Li ◽  
Shao Hai Zeng ◽  
...  

An embedded SiGe layer was applied in the source/drain areas (S/D) of a field-effect transistor to boost the performance in the p channels. Raised SiGe S/D plays a critical role in strain engineering. In this study, the relationship between the SiGe overfilling and the enhancement of channel stress was investigated. Systematic technology computer aided design (TCAD) simulations of the SiGe overfill height in a 40 nm PMOS were performed. The simulation results indicate that a moderate SiGe overfilling induces the highest stress in the channel. Corresponding epitaxial growth experiments were done and the obtained experimental data was in good agreement with the simulation results. The effect of the SiGe overfilling is briefly discussed. The results and conclusions presented within this paper might serve as useful references for the optimization of the embedded SiGe stressor for 40 nm logic technology node and beyond.


2011 ◽  
Vol 189-193 ◽  
pp. 2535-2538 ◽  
Author(s):  
Hong Yan ◽  
Wen Xian Huang

The thixo-forging of magnesium matrix composite was analyzed with computer numerical simulation based on rigid viscoplastic finite element method. The constitutive model of SiCp/AZ61 composite was established in our prior literature. Behavior of metal flow and temperature field were obtained. The differences between traditional forging and thixo-forging processes were analyzed. Results indicated that thixo-forging was better in filling cavity than forging. Simulation results were good agreement with experimental ones.


2021 ◽  
pp. 204141962110377
Author(s):  
Yaniv Vayig ◽  
Zvi Rosenberg

A large number of 3D numerical simulations were performed in order to follow the trajectory changes of rigid CRH3 ogive-nosed projectiles, impacting semi-infinite metallic targets at various obliquities. These trajectory changes are shown to be related to the threshold ricochet angles of the projectile/target pairs. These threshold angles are the impact obliquities where the projectiles end up moving in a path parallel to the target’s face. They were found to depend on a non-dimensional entity which is equal to the ratio between the target’s resistance to penetration and the dynamic pressure exerted by the projectile upon impact. Good agreement was obtained by comparing simulation results for these trajectory changes with experimental data from several published works. In addition, numerically-based relations were derived for the penetration depths of these ogive-nosed projectiles at oblique impacts, which are shown to agree with the simulation results.


1971 ◽  
Vol 8 (03) ◽  
pp. 327-333
Author(s):  
R. H. Salzman

This paper presents a semi-graphical approach for finding the first critical speed of a stepped shaft with finite bearing stiffness. The method is particularly applicable to high-speed turbine rotors with journal bearings. Using Rayleigh's Method and the exact solution for whirling of a uniform shaft with variable support stiffness, estimates of the lowest critical speed are easily obtained which are useful in the design stage. First critical speeds determined by this method show good agreement with values computed by the Prohl Method for the normal range of bearing stiffness. A criterion is also established for determining if the criticals are "bearing critical speeds" or "bending critical speeds," which is of importance in design. Discusser E. G. Baker


Sign in / Sign up

Export Citation Format

Share Document