Study on Heat Conduction in a Simulated Multicore Processor Chip—Part I: Analytical Modeling

2013 ◽  
Vol 135 (2) ◽  
Author(s):  
Wataru Nakayama

A system of temperature calculations is developed to study the conditions leading to hot spot occurrence on multicore processor chips. The analysis is performed on a physical model which incorporates certain salient features of multicore processor. The model has active and background cells laid out in a checkered pattern, and the pattern repeats itself in fine grain active cells. The die has a buried dioxide and a wiring layer stacked on the die body, and heat sources are placed at the wiring layer/buried oxide interface. With this model we explore the effects of various parameters on the target spot temperature. The parameters are the die dimensions, the materials' thermal conductivities, the effective heat transfer coefficients on the die surfaces, the power map, and the spatial resolution with which we view the power and temperature distributions on the die. Closed-form analytical solutions are derived and used to examine the roles of these parameters in creating hot spots. The present paper reports the details of mathematical formulations and steps of temperature calculation. The results for a particular example case are included to illustrate what can be learned from the calculations.

Author(s):  
Horacio Nochetto ◽  
Peng Wang ◽  
Avram Bar-Cohen

Driven by shrinking feature sizes, microprocessor hot spots have emerged as the primary driver for on-chip cooling of today’s IC technologies. Current thermal management technologies offer few choices for such on-chip hot spot remediation. A solid state germanium self-cooling layer, fabricated on top of the silicon chip, is proposed and demonstrated to have great promise for reducing the severity of on-chip hot spots. 3D thermo-electrical coupled simulations are used to investigate the effectiveness of a bi-layer device containing a germanium self-cooling layer above an electrically insulated silicon layer. The parametric variables of applied current, cooler size, silicon percentage, and total die thickness are sequentially optimized for the lowest hot spot temperature compared to a non-self-cooled silicon chip. Results suggest that the localized self-cooling of the germanium layer coupled with the higher thermal conductivity of the silicon chip can significantly reduce the temperature rise resulting from a micro-scaled hot spot.


Author(s):  
A.K. Naghdi

Employing a new class of basis functions, certain steady-state two-dimensional heat conduction problems for a multihole circular cylinder are solved. It is assumed that the outer boundary of the cylinder is subject to convection, while the cases of the following inner boundary conditions are investigated. (1) The inner boundaries are subject to a constant temperature. (2) The inner boundaries are subject to convection. (3) The inner circular cylinders consist of a different material containing uniform heat sources. It is also assumed that the properties of the materials involved, and the factors such as the convection heat transfer coefficients are temperature independent. Numerical results for all of the three aforementioned cases are presented, and for a particular case, the result is compared with that of a previous investigator.


2018 ◽  
Vol 140 (12) ◽  
Author(s):  
Bugra Sarper ◽  
Mehmet Saglam ◽  
Orhan Aydin

In this study, convective heat transfer in a discretely heated parallel-plate vertical channel which simulates an IC package is investigated experimentally and numerically. Both natural and mixed convection cases are considered. The primary focus of the study is on determining optimum relative lengths of the heat sources in order to reduce the hot spot temperature and to maximize heat transfer from the sources to air. Various values of the length ratio and the modified Grashof number (for the natural convection case)/the Richardson number (for the mixed convection case) are examined. Conductive and radiative heat transfer is included in the analysis while air is used as the working fluid. Surface temperatures of the heat sources and the channel walls are measured in the experimental study. The numerical studies are performed using a commercial CFD code, ANSYS fluent. The variations of surface temperature, hot spot temperature, Nusselt number, and global conductance of the system are obtained for varying values of the working parameters. From the experimental studies, it is showed that the use of identical heat sources reduces the overall cooling performance both in natural and mixed convection. However, relatively decreasing heat sources lengths provides better cooling performance.


This paper describes an experimental study of the initiation of solid explosives, and in particular the effect of artificially introducing transient hot spots of known maximum temperature. This was done by adding small foreign particles (or grit) of known melting-point. The minimum transient hot-spot temperature for the initiation of a number of secondary and primary explosives has been determined in this way. It is shown that the melting-point of the grit is the determining factor , and all the grits which sensitize these explosives to initiation either by friction or impact have melting-points above a threshold value which lies between 400 and 550 ° C. Grit particles of lower melting-point do not sensitize the explosives. The same explosives initiated by the adiabatic compression of air required, for initiation, minimum transient temperatures of the same order as the threshold melting-point values. The results provide strong evidence that the initiation of solids as well as of liquids by friction and impact is thermal in origin and is due to the formation of localized hot spots. There is evidence that in the case of the majority of secondary explosives which melt at comparatively low temperatures, intergranular friction is not able to cause explosion and the hot spots must be formed in some other way. With the primary explosives which explode at temperatures below their melting-points, hot spots formed by intergranular friction can be important.


Author(s):  
Steven Beltz ◽  
Bin Liu ◽  
Zeses Karoutas

This paper presents a computational fluid dynamics (CFD) modeling methodology that has been developed to provide predictions of very local heat transfer variation in fuel rod assemblies. Results from the CFD analysis are used in HIDUTYDRV and other advanced codes that have been developed and are used internally by Westinghouse to predict very local crud deposition and dryout. This methodology is used in making the EPRI Level IV crud and corrosion guideline assessments, which were developed in response to the INPO 0 by 2010 initiatives. This methodology has been in production use for risk assessment of CE-design 14×14 and 16×16 fuel reloads. The methodology is in the process of being extended to other Westinghouse fuel design reloads. Local crud deposition and dryout are strongly dependent on very local boiling or steaming on small areas of the fuel rod, often referred to as local hot spots. These local hot spots can not be predicted utilizing standard subchannel modeling methodology because subchannel models do not provide sufficient azimuthal detail of individual rods. Local hot spots are also very dependent on the particular grid features, which are not explicitly modeled in subchannel analysis. The commercial code Star-CD by CD-ADAPCO is utilized to develop a detailed CFD model of a single fuel assembly grid span. Detailed azimuthal and axial predictions of the heat transfer coefficient are made for each rod in the model. These predictions are then normalized to a Dittus-Boelter based heat transfer coefficient so that the predictions can be translated to other spans and other fuel assemblies. Details of this translation as well as the use of normalized heat transfer coefficients in the advanced codes used to predict local crud and dryout are provided in a separate follow-on paper ICONE17-75715 also being presented at ICONE17. This paper presents details on the CFD methodology that has been developed to predict local normalized heat transfer coefficients for a fuel rod assembly. Results for a particular application are provided to illustrate the methodology. The application is for a fuel design that contains mixing grids and spans with and without intermediate flow mixers.


Author(s):  
Zhengang Zhao ◽  
Zhangnan Jiang ◽  
Yang Li ◽  
Chuan Li ◽  
Dacheng Zhang

The temperature of the hot-spots on windings is a crucial factor that can limit the overload capacity of the transformer. Few studies consider the impact of the load on the hot-spot when studying the hot-spot temperature and its location. In this paper, a thermal circuit model based on the thermoelectric analogy method is built to simulate the transformer winding and transformer oil temperature distribution. The hot-spot temperature and its location under different loads are qualitatively analyzed, and the hot-spot location is analyzed and compared to the experimental results. The results show that the hot-spot position on the winding under the rated power appears at 85.88% of the winding height, and the hot-spot position of the winding moves down by 5% in turn at 1.3, 1.48, and 1.73 times the rated power respectively.


2020 ◽  
Author(s):  
Andrea Gabrieli ◽  
Robert Wright ◽  
Harold Garbeil ◽  
Eric Pilger

<p>Space-borne hot-spot detection on the Earth surface is key to monitoring and studying volcanic activity, wildfires and anthropogenic heat sources from space. Lower intensity thermal emission hot-spots, which often represent the onset of volcanic eruptions and large wildfires, are difficult to detect. We are improving the MODVOLC algorithm, which monitors Earth’s surface for hot-spots by analyzing Moderate Resolution Imaging Spectroradiometer (MODIS) data every 48 hours, to allow lower intensity thermal emission detection. Improving the existing MODVOLC algorithm for hot-spot detection from MODIS image data is not trivial. A new approach, which we refer it to as the Maximum Radiance Algorithm for MODIS, has been explored. The new approach requires a MODIS 4 µm and accompanying 12 µm global radiance time-series at ~1 km grid spacing. This reference data set describes the maximum radiance that has been measured from each square km of Earth’s surface over a ten year period (having first excluded high natural and anthropogenic heat sources from the time-series, using the existing MODVOLC approach). For each new geolocated MODIS image data, the observed radiance for each pixel is compared with this reference, and if its radiance exceeds the historical maximum, it can be considered a potential hot-spot. A dynamic tolerance is used to then confirm if the potential hot-spot is an actual hot-spot. We show that this new approach for hot-spot detection offers significant advantage over existing techniques for lower intensity thermal emission hot-spot detection during both day and nighttime conditions.</p>


Author(s):  
Karen M. Dowling ◽  
Ateeq J. Suria ◽  
Yoonjin Won ◽  
Ashwin Shankar ◽  
Hyoungsoon Lee ◽  
...  

High aspect ratio microchannels using high thermal conductivity materials such as silicon carbide (SiC) have recently been explored to locally cool micro-scale power electronics that are prone to on-chip hot spot generation. Analytical and finite element modeling shows that SiC-based microchannels used for localized cooling should have high aspect ratio features (above 8:1) to obtain heat transfer coefficients (300 to 600 kW/m2·K) required to obtain gallium nitride (GaN) device channel temperatures below 100°C. This work presents experimental results of microfabricating high aspect ratio microchannels in a 4H-SiC substrate using inductively coupled plasma (ICP) etching. Depths of 90 μm and 80 μm were achieved with a 5:1 and 12:1 aspect ratio, respectively. This microfabrication process will enable the integration of microchannels (backside features) with high-power density devices such as GaN-on-SiC based electronics, as well as other SiC-based microfluidic applications.


Sign in / Sign up

Export Citation Format

Share Document