A New Design Tool for Tire Braking Performance Evaluations

Author(s):  
Srikanth Sivaramakrishnan ◽  
Yaswanth Siramdasu ◽  
Saied Taheri

The objective of this study is to understand the influence of high frequency tire vibrations induced due to road disturbances and brake torque cycling due to anti-lock braking system (ABS) on braking performance. Under these conditions, transient dynamics of the tire play a crucial role in the generation of braking force. To implement this, a dynamic tire model was developed using a rigid ring tire and a tandem elliptical cam design for the enveloping model. This tire model is validated using experimental data obtained from high-speed cleat tests on a fixed axle. The validated tire model is then integrated with a quarter vehicle and a commercial grade rule-based ABS model to evaluate braking performance with and without a road cleat, which can provide a high frequency disturbance. Simulation results show that the presence of a 1 cm cleat causes large variations in wheel slip, consequently increasing the braking distance. The developed tool will help both tire and vehicle manufactures for quick and early evaluation of braking performance without computationally intensive finite element analysis (FEA) tools.

Author(s):  
Srikanth Sivaramakrishnan ◽  
Yaswanth Siramdasu ◽  
Saied Taheri

The objective of this study is to understand the influence of high frequency tire vibrations induced due to road disturbances and brake torque cycling due to ABS on braking performance. Under these conditions, transient dynamics of the tire play a crucial role in the generation of braking force. To implement this, a dynamic tire model was developed using a rigid ring tire and a tandem elliptical cam design for the enveloping model. This tire model is validated using experimental data obtained from high speed cleat tests on a fixed axle. The validated tire model is then integrated with a quarter vehicle and a commercial grade rule-based ABS model to evaluate braking performance with and without a road cleat, which can provide a high frequency disturbance. Simulation results show that the presence of a 1 cm cleat cause large variations in wheel slip, consequently increasing the braking distance. The developed tool will help both tire and vehicle manufactures for quick and early evaluation of braking performance without computationally intensive FEA tools.


2015 ◽  
Vol 741 ◽  
pp. 521-525
Author(s):  
Xiao Guang Kong ◽  
Li Ping Fan ◽  
Yan Qiu Fu

Mathematics model of loss for high speed machine is discussed. Calculation method of core loss and high-frequency additional copper loss of winding based on finite element analysis is introduced. Experiment results of losses are presented. In order to realize calculation and analysis, a method of PM machine by calling ANSYS and MATLAB based on VB of the combination of electric circuit and electromagnetic field solution is presented in this paper. The design and feature analysis of high speed PM machine takes an example to validate the accuracy and advantage.


2016 ◽  
Vol 44 (2) ◽  
pp. 74-102 ◽  
Author(s):  
Yaswanth Siramdasu ◽  
Saied Taheri

ABSTRACT In the past, handling performance of the tire–vehicle combination has been evaluated using tire models such as the Pacejka Magic Formula. These models usually lack realistic representation of tire–road interaction and are not suitable for combined steering and braking maneuvers that may activate the antilock braking system. The objective of this study is to develop a computationally simple and accurate tire model, which can be used in the development and evaluation of handling performance of the tire on uneven road surfaces. For an emergency obstacle avoidance maneuver at high speeds, transient tire behavior plays a crucial role in the generation of forces between tire and road. Road undulations and steering inputs both induce high-frequency tire belt vibrations, which have detrimental effects on the handling and tractive behavior of the tire. To meet these requirements, a dynamic six degrees of freedom tire model–based rigid ring approach is developed and integrated with a multiple tandem elliptical cam to include enveloping behavior of the tire. The tire model that is developed in this research is partially based on the work of Schmeitz found in the literature. The tire model was parameterized using experimental parameters found in the literature. The tire model is validated using fixed axle high-speed oblique cleat experimental data. The developed tire model is integrated with the vehicle model in CarSim®. From the simulation of successive step steering input, the increasing influence of tire belt vibrations at higher slip angles was observed due to sudden steering wheel inputs. From the simulation of the step steering input on the bad asphalt road surface with an added cleat and on the flat smooth road surface, it was observed that the lateral performance of the tire at higher slip angles is strongly influenced by the vertical load variations. A single lane change maneuver was simulated on the smooth and bad asphalt road surfaces, demonstrating the strong influence of tire lateral and vertical belt vibrations on the lateral performance of the vehicle. Simulation of high-speed emergency obstacle avoidance braking maneuvers on measured rough and smooth roads showed that the influence of high-frequency vibrations due to road undulations and step steering inputs causes large variations of longitudinal and lateral forces at the axle, thus creating large variations in slip and slip angle of the tire with a degraded braking distance on rough roads.


2016 ◽  
Vol 44 (1) ◽  
pp. 2-21 ◽  
Author(s):  
Karan R. Khanse ◽  
Yaswanth Siramdasu ◽  
Saied Taheri

ABSTRACT Automotive and tire companies have to spend extensive amounts of time and money to tune their products through prototype testing at dedicated test facilities. This is mainly because of the limitations in the simulation capabilities that exist today. With greater competence in simulation comes more control over designs in the initial stages, which in turn lowers the demand for the expensive stage of tuning. This article aims at taking today's simulation capabilities a step forward by integrating models that are best developed in different software interfaces. An in-plane rigid ring tire model has been developed to understand the transient response of tires to various high-frequency events such as antilock braking and short-wavelength road disturbances. A rule-based antilock braking systems (ABS) model performed the high-frequency braking operation. The tire and ABS models were created in the Matlab-Simulink environment. A vehicle model was developed in CarSim. The models developed in Simulink were integrated with the vehicle model in CarSim, in the form of a design tool that can be used by tire as well as car designers for further tuning of the vehicle functional performances, as they relate to handling and braking maneuvers. The straight-line ABS performance was predicted using these models for a sample vehicle, and the results were substantiated through physical outdoor tests on the same vehicle to validate the developed integration package. The tool development, simulation results, and the objective test will be discussed.


2011 ◽  
Vol 121-126 ◽  
pp. 3437-3443
Author(s):  
Hai Jun Wang ◽  
Jing Zeng ◽  
Guang Bing Luo ◽  
Zhuan Hua Liu

The emergency braking deceleration and braking distance of high-speed train were studied under the conditions of adhesion brake on dry and humid rail surfaces, and adhesion and non-adhesion composite brake on humid rail surface. The average emergency braking deceleration was calculated by the area-method. The results show that the braking performance is affected significantly by the wheel/rail adhesion state and the braking performance of high-speed train can be improved by applying the adhesion and non-adhesion composite brake in the state of humid rail surface.


Electronics ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1076
Author(s):  
Wenfei Yu ◽  
Wei Hua ◽  
Zhiheng Zhang

Accurate prediction of core losses plays an important role in the design and analysis of flux-switching permanent magnet (FSPM) machines, especially during high-speed and high-frequency operation. Firstly, based on the numerical method, a high-frequency core loss prediction method considering a DC-bias magnetization component and local hysteresis loops as well as the harmonic effect is proposed. Secondly, the magnetizing characteristics of the silicon steel sheet and, consequently, the core loss of the electrical steel used as the core lamination are measured. Then, the loss coefficient of each core loss component is obtained by the data fitting tool. Based on the proposed method, the stator and rotor core losses of a three-phase, 12-stator-slot, and 10-rotor-pole (12/10) FSPM machine with different soft iron materials and driving modes are calculated. Finally, the results of the numerical method are verified by conventional finite element analysis.


2015 ◽  
Vol 9 (1) ◽  
pp. 351-360 ◽  
Author(s):  
Xiaoxiang Gong ◽  
Siqing Chang ◽  
Lichen Jiang ◽  
Xiaopan Li

For the characteristics of full electric propulsion, a novel kind of brake-by-wire unit is designed for electric vehicle to improve braking performance. A comprehensive brake-by-wire system including this unit is set up after its structure and principle are introduced. Then, a multi-layer fuzzy controller is proposed to regulate decelerate and wheel slip rate, and an optimal regenerative strategy is proposed to recover braking energy. At last, the experiment of brake unit is completed to verify that this novel unit is technologically feasible, and an electric vehicle co-simulation model based on MATLAB/Simulink and AMESim is established to prove that this novel unit is able to significantly improve braking performance of electric vehicle. The simulation result shows braking distance and time are shorten by 12.19% and 15.54% respectively compared with conventional ABS system in the same braking condition, and the recovery efficiencies in light and heavy braking are 53% and 28% respectively.


2020 ◽  
Vol 64 (1-4) ◽  
pp. 959-967
Author(s):  
Se-Yeong Kim ◽  
Tae-Woo Lee ◽  
Yon-Do Chun ◽  
Do-Kwan Hong

In this study, we propose a non-contact 80 kW, 60,000 rpm coaxial magnetic gear (CMG) model for high speed and high power applications. Two models with the same power but different radial and axial sizes were optimized using response surface methodology. Both models employed a Halbach array to increase torque. Also, an edge fillet was applied to the radial magnetized permanent magnet to reduce torque ripple, and an axial gap was applied to the permanent magnet with a radial gap to reduce eddy current loss. The models were analyzed using 2-D and 3-D finite element analysis. The torque, torque ripple and eddy current loss were compared in both models according to the materials used, including Sm2Co17, NdFeBs (N42SH, N48SH). Also, the structural stability of the pole piece structure was investigated by forced vibration analysis. Critical speed results from rotordynamics analysis are also presented.


2001 ◽  
Vol 29 (3) ◽  
pp. 134-154 ◽  
Author(s):  
J. R. Luchini ◽  
M. M. Motil ◽  
W. V. Mars

Abstract This paper discusses the measurement and modeling of tire rolling resistance for a group of radial medium truck tires. The tires were subjected to tread depth modifications by “buffing” the tread surface. The experimental work used the equilibrium test method of SAE J-1269. The finite element analysis (FEA) tire model for tire rolling resistance has been previously presented. The results of the testing showed changes in rolling resistance as a function of tread depth that were inconsistent between tires. Several observations were also inconsistent with published information and common knowledge. Several mechanisms were proposed to explain the results. Additional experiments and models were used to evaluate the mechanisms. Mechanisms that were examined included tire age, surface texture, and tire shape. An explanation based on buffed tread radius, and the resulting changes in footprint stresses, is proposed that explains the observed experimental changes in rolling resistance with tread depth.


Author(s):  
A. Suresh Babu ◽  
B. Anand

: A Linear Feedback Shift Register (LFSR) considers a linear function typically an XOR operation of the previous state as an input to the current state. This paper describes in detail the recent Wireless Communication Systems (WCS) and techniques related to LFSR. Cryptographic methods and reconfigurable computing are two different applications used in the proposed shift register with improved speed and decreased power consumption. Comparing with the existing individual applications, the proposed shift register obtained >15 to <=45% of decreased power consumption with 30% of reduced coverage area. Hence this proposed low power high speed LFSR design suits for various low power high speed applications, for example wireless communication. The entire design architecture is simulated and verified in VHDL language. To synthesis a standard cell library of 0.7um CMOS is used. A custom design tool has been developed for measuring the power. From the results, it is obtained that the cryptographic efficiency is improved regarding time and complexity comparing with the existing algorithms. Hence, the proposed LFSR architecture can be used for any wireless applications due to parallel processing, multiple access and cryptographic methods.


Sign in / Sign up

Export Citation Format

Share Document