Improving Endo-Myocardial Biopsy by Real-Time Spectral Tissue Sensing: A Feasibility Study

2020 ◽  
Author(s):  
Awaz Ali ◽  
Paul Breedveld ◽  
Benno H Hendriks

Abstract Objective: The aim of this research is to integrate spectral tissue sensing technology inside a cardiac bioptome for real-time measurements of tissue characteristics. Methods: Bioptome tip and handle components were designed and manufactured to house and guide optical fibers. The designed components were assembled on a cardiac bioptome together with optical fibers. A technical feasibility test was carried out to study the functionality of the instrument and the effect of the optical technology on the biopsy performance. Biopsy samples were taken from five different tissue types in a porcine heart and the resulting optical spectra were compared. Results: Spectral tissue sensing fibers were successfully integrated inside a conventional cardiac bioptome. The integrated instrument allowed differentiation between ventricular tissue, blood, and cardiac fat tissue based on blood and fat percentage and amount of scattering. Moreover, differences between scarred and non-scarred tissue were clearly visible. Conclusion: A first step has been made in the use of spectral tissue sensing for the detection of different tissue structures for endo-myocardial biopsy. The instrument was able to differentiate between various tissues, as well as between healthy and diseased cardiac tissues. Future research should focus on measurements of naturally diseased cardiac tissue, repeated measurements with statistical value, and improvements to the instrument design. Significance: Having the ability to measure tissue characteristics prior to acquiring a biopsy sample will not only allow easier positioning of the bioptome at the correct location, but can also prevent sampling undesired tissue or scar tissue from previous biopsies.

Micromachines ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 914
Author(s):  
Arsalan Ul Haq ◽  
Felicia Carotenuto ◽  
Paolo Di Nardo ◽  
Roberto Francini ◽  
Paolo Prosposito ◽  
...  

Myocardial infarction (MI) is the consequence of coronary artery thrombosis resulting in ischemia and necrosis of the myocardium. As a result, billions of contractile cardiomyocytes are lost with poor innate regeneration capability. This degenerated tissue is replaced by collagen-rich fibrotic scar tissue as the usual body response to quickly repair the injury. The non-conductive nature of this tissue results in arrhythmias and asynchronous beating leading to total heart failure in the long run due to ventricular remodelling. Traditional pharmacological and assistive device approaches have failed to meet the utmost need for tissue regeneration to repair MI injuries. Engineered heart tissues (EHTs) seem promising alternatives, but their non-conductive nature could not resolve problems such as arrhythmias and asynchronous beating for long term in-vivo applications. The ability of nanotechnology to mimic the nano-bioarchitecture of the extracellular matrix and the potential of cardiac tissue engineering to engineer heart-like tissues makes it a unique combination to develop conductive constructs. Biomaterials blended with conductive nanomaterials could yield conductive constructs (referred to as extrinsically conductive). These cell-laden conductive constructs can alleviate cardiac functions when implanted in-vivo. A succinct review of the most promising applications of nanomaterials in cardiac tissue engineering to repair MI injuries is presented with a focus on extrinsically conductive nanomaterials.


Sensors ◽  
2021 ◽  
Vol 21 (14) ◽  
pp. 4865
Author(s):  
Kinzo Kishida ◽  
Artur Guzik ◽  
Ken’ichi Nishiguchi ◽  
Che-Hsien Li ◽  
Daiji Azuma ◽  
...  

Distributed acoustic sensing (DAS) in optical fibers detect dynamic strains or sound waves by measuring the phase or amplitude changes of the scattered light. This contrasts with other distributed (and more conventional) methods, such as distributed temperature (DTS) or strain (DSS), which measure quasi-static physical quantities, such as intensity spectrum of the scattered light. DAS is attracting considerable attention as it complements the conventional distributed measurements. To implement DAS in commercial applications, it is necessary to ensure a sufficiently high signal-noise ratio (SNR) for scattered light detection, suppress its deterioration along the sensing fiber, achieve lower noise floor for weak signals and, moreover, perform high-speed processing within milliseconds (or sometimes even less). In this paper, we present a new, real-time DAS, realized by using the time gated digital-optical frequency domain reflectometry (TGD-OFDR) method, in which the chirp pulse is divided into overlapping bands and assembled after digital decoding. The developed prototype NBX-S4000 generates a chirp signal with a pulse duration of 2 μs and uses a frequency sweep of 100 MHz at a repeating frequency of up to 5 kHz. It allows one to detect sound waves at an 80 km fiber distance range with spatial resolution better than a theoretically calculated value of 2.8 m in real time. The developed prototype was tested in the field in various applications, from earthquake detection and submarine cable sensing to oil and gas industry applications. All obtained results confirmed effectiveness of the method and performance, surpassing, in conventional SM fiber, other commercially available interrogators.


J ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 147-153
Author(s):  
Paula Morella ◽  
María Pilar Lambán ◽  
Jesús Antonio Royo ◽  
Juan Carlos Sánchez

Among the new trends in technology that have emerged through the Industry 4.0, Cyber Physical Systems (CPS) and Internet of Things (IoT) are crucial for the real-time data acquisition. This data acquisition, together with its transformation in valuable information, are indispensable for the development of real-time indicators. Moreover, real-time indicators provide companies with a competitive advantage over the competition since they enhance the calculus and speed up the decision-making and failure detection. Our research highlights the advantages of real-time data acquisition for supply chains, developing indicators that would be impossible to achieve with traditional systems, improving the accuracy of the existing ones and enhancing the real-time decision-making. Moreover, it brings out the importance of integrating technologies 4.0 in industry, in this case, CPS and IoT, and establishes the main points for a future research agenda of this topic.


Electronics ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1043
Author(s):  
Abdallah A. Smadi ◽  
Babatunde Tobi Ajao ◽  
Brian K. Johnson ◽  
Hangtian Lei ◽  
Yacine Chakhchoukh ◽  
...  

The integration of improved control techniques with advanced information technologies enables the rapid development of smart grids. The necessity of having an efficient, reliable, and flexible communication infrastructure is achieved by enabling real-time data exchange between numerous intelligent and traditional electrical grid elements. The performance and efficiency of the power grid are enhanced with the incorporation of communication networks, intelligent automation, advanced sensors, and information technologies. Although smart grid technologies bring about valuable economic, social, and environmental benefits, testing the combination of heterogeneous and co-existing Cyber-Physical-Smart Grids (CP-SGs) with conventional technologies presents many challenges. The examination for both hardware and software components of the Smart Grid (SG) system is essential prior to the deployment in real-time systems. This can take place by developing a prototype to mimic the real operational circumstances with adequate configurations and precision. Therefore, it is essential to summarize state-of-the-art technologies of industrial control system testbeds and evaluate new technologies and vulnerabilities with the motivation of stimulating discoveries and designs. In this paper, a comprehensive review of the advancement of CP-SGs with their corresponding testbeds including diverse testing paradigms has been performed. In particular, we broadly discuss CP-SG testbed architectures along with the associated functions and main vulnerabilities. The testbed requirements, constraints, and applications are also discussed. Finally, the trends and future research directions are highlighted and specified.


Author(s):  
Bernd Resch ◽  
Andreas Wichmann ◽  
Nicolas Göll

Even though advantages of 3D visualisation of multi-temporal geo-data versus 2D approaches have been widely proven, the particular pertaining challenge of real-time visualisation of geo-data in mobile Digital Earth applications has not been thoroughly tackled so far. In the emerging field of Augmented Reality (AR), research needs comprise finding the optimal information density, the interplay between orientation data in the background and other information layers, using the appropriate graphical variables for display, or selecting real-time base data with adequate quality and suitable spatial accuracy. In this paper we present a concept for integrating real-time data into 4D (three spatial dimensions plus time) AR environments, i.e., data with “high” spatial and temporal variations. We focus on three research challenges: 1.) high-performance integration of real-time data into AR; 2.) usability design in terms of displaying spatio-temporal developments and the interaction with the application; and 3.) design considerations regarding reality vs. virtuality, visualisation complexity and information density. We validated our approach in a prototypical application and extracted several limitations and future research areas including natural feature recognition, the cross-connection of (oftentimes monolithic) AR interface developments and well-established cartographic principles, or fostering the understanding of the temporal context in dynamic 4D Augmented Reality environments.


Author(s):  
Ana Clariza Natanauan ◽  
Jenmart Bonifacio ◽  
Mikael Manuel ◽  
Rex Bringula ◽  
John Benedic Enriquez

This descriptive-exploratory study attempted to give the readers a portrait of cyber café gamers in Manila. It determined the profile of gamers, their gaming usage, and their purposes of cyber café gaming. Descriptive statistics revealed that most of the respondents were Manila settlers, students, pursuing or had obtained college degrees, male, young, Roman Catholic, single, belonged to middle-income class, and played games in cyber cafés in the afternoon once to twice a week. One-way chi-square showed that frequency of gaming was not equally distributed in a week and gamers showed tendency to play games in a cyber in a particular time of the day. Real-time strategy games were the most frequently played games in cyber cafés. To recreate, to relieve boredom, and to have fun were the top three reasons in playing games in cyber cafés. Conclusions and directions for future research were also presented.


2001 ◽  
Vol 280 (5) ◽  
pp. H2006-H2010 ◽  
Author(s):  
David J. Christini ◽  
Jeff Walden ◽  
Jay M. Edelberg

Dynamic regulation of biological systems requires real-time assessment of relevant physiological needs. Biosensors, which transduce biological actions or reactions into signals amenable to processing, are well suited for such monitoring. Typically, in vivo biosensors approximate physiological function via the measurement of surrogate signals. The alternative approach presented here would be to use biologically based biosensors for the direct measurement of physiological activity via functional integration of relevant governing inputs. We show that an implanted excitable-tissue biosensor (excitable cardiac tissue) can be used as a real-time, integrated bioprocessor to analyze the complex inputs regulating a dynamic physiological variable (heart rate). This approach offers the potential for long-term biologically tuned quantification of endogenous physiological function.


2012 ◽  
Vol 80 ◽  
pp. 129-135 ◽  
Author(s):  
Stéphanie Pasche ◽  
Bastien Schyrr ◽  
Bernard Wenger ◽  
Emmanuel Scolan ◽  
Réal Ischer ◽  
...  

Real-time, on-body measurement using minimally invasive biosensors opens up new perspectives for diagnosis and disease monitoring. Wearable sensors are placed in close contact with the body, performing analyses in accessible biological fluids (wound exudates, sweat). In this context, a network of biosensing optical fibers woven in textile enables the fabric to measure biological parameters in the surrounding medium. Optical fibers are attractive in view of their flexibility and easy integration for on-body monitoring. Biosensing fibers are obtained by modifying standard optical fibers with a sensitive layer specific to biomarkers. Detection is based on light absorption of the sensing fiber, placing a light source and a detector at both extremities of the fiber. Biosensing optical fibers have been developed for the in situ monitoring of wound healing, measuring pH and the activity of proteases in exudates. Other developments aim at the design of sensing patches based on functionalized, porous sol-gel layers, which can be deposited onto textiles and show optical changes in response to biomarkers. Biosensing textiles present interesting perspectives for innovative healthcare monitoring. Wearable sensors will provide access to new information from the body in real time, to support diagnosis and therapy.


2021 ◽  
Author(s):  
Romak Kordnejad

This thesis focuses on the current state of combined sewer overflows (CSO) in the City of Toronto and the potential benefits of utilizing real-time monitoring system to explore options for optimizing current models and reducing future overflows. CSOs containing sanitary and stormwater sewage over spill during wet weather conditions, contaminating bodies of water. Antiquated sewer systems built to support population at the time, no longer have the required capacity to support exponential growth causing environmental damage. Key research findings include exploring the current CSO state in the City of Toronto, remediation plans executed by the City in hopes to reduce CSO and finally concluding the City’s progress to date. Extensive research on CSOs in North American cities has shown initiative towards reducing CSOs while using real-time monitoring systems which can be utilized in the City of Toronto. Future research is required to find effective and efficient ways of implementing such systems.


2006 ◽  
Vol 60 (7-8) ◽  
pp. 176-179
Author(s):  
Aleksandar Kojovic ◽  
Irena Zivkovic ◽  
Ljiljana Brajovic ◽  
Dragan Mitrakovic ◽  
Radoslav Aleksic

This paper investigates the possibility of applying optical fibers as sensors for investigating low energy impact damage in laminar thermoplastic composite materials, in real time. Impact toughness testing by a Charpy impact pendulum with different loads was conducted in order to determine the method for comparative measurement of the resulting damage in the material. For that purpose intensity-based optical fibers were built in to specimens of composite materials with Kevlar 129 (the DuPont registered trade-mark for poly(p-phenylene terephthalamide)) woven fabric as reinforcement and thermoplastic PVB (poly(vinyl butyral)) as the matrix. In some specimens part of the layers of Kevlar was replaced with metal mesh (50% or 33% of the layers). Experimental testing was conducted in order to observe and analyze the response of the material under multiple low-energy impacts. Light from the light-emitting diode (LED) was launched to the embedded optical fiber and was propagated to the phototransistor-based photo detector. During each impact, the signal level, which is proportional to the light intensity in the optical fiber, drops and then slowly recovers. The obtained signals were analyzed to determine the appropriate method for real time damage monitoring. The major part of the damage occurs during impact. The damage reflects as a local, temporary release of strain in the optical fiber and an increase of the signal level. The obtained results show that intensity-based optical fibers could be used for measuring the damage in laminar thermoplastic composite materials. The acquired optical fiber signals depend on the type of material, but the same set of rules (relatively different, depending on the type of material) could be specified. Using real time measurement of the signal during impact and appropriate analysis enables quantitative evaluation of the impact damage in the material. Existing methods in most cases use just the intensity of the signal before and after the impact, as the measure of damage. This method could be used to monitor the damage in real time, giving warnings before fatal damage occurs.


Sign in / Sign up

Export Citation Format

Share Document