scholarly journals Magnetic Forces Enable Control of Biological Processes In Vivo

2020 ◽  
pp. 1-21
Author(s):  
Gang Bao

Abstract Similar to mechanical forces that can induce profound biological effects, magnetic fields can have a broad range of implications to biological systems, from magnetoreception that allows an organism to detect a magnetic field to perceive direction, altitude or location, to the use of heating induced by magnetic field for altering neuron activity. This review focuses on the application of magnetic forces generated by magnetic iron oxide nanoparticles (MIONs), which can also provide imaging contrast and mechanical/thermal energy in response to an external magnetic field, a special feature that distinguishes MIONs from other nanomaterials. The magnetic properties of MIONs offer unique opportunities for enabling new biological functions under different magnetic fields. Here we describe the approaches of utilizing the forces generated by MIONs under applied magnetic field to enable new biological functions, including the targeting of drug molecules to a specific tissue, increasing vessel permeability for improving drug delivery, and activating a particular viral vector for spatial control of genome editing in vivo. The opportunities of using nanomagnets for a broad range of biomedical applications are briefly discussed.

Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1459
Author(s):  
Tatiana N. Zamay ◽  
Vladimir S. Prokopenko ◽  
Sergey S. Zamay ◽  
Kirill A. Lukyanenko ◽  
Olga S. Kolovskaya ◽  
...  

Magnetomechanical therapy is one of the most perspective directions in tumor microsurgery. According to the analysis of recent publications, it can be concluded that a nanoscalpel could become an instrument sufficient for cancer microsurgery. It should possess the following properties: (1) nano- or microsized; (2) affinity and specificity to the targets on tumor cells; (3) remote control. This nano- or microscalpel should include at least two components: (1) a physical nanostructure (particle, disc, plates) with the ability to transform the magnetic moment to mechanical torque; (2) a ligand—a molecule (antibody, aptamer, etc.) allowing the scalpel precisely target tumor cells. Literature analysis revealed that the most suitable nanoscalpel structures are anisotropic, magnetic micro- or nanodiscs with high-saturation magnetization and the absence of remanence, facilitating scalpel remote control via the magnetic field. Additionally, anisotropy enhances the transmigration of the discs to the tumor. To date, four types of magnetic microdiscs have been used for tumor destruction: synthetic antiferromagnetic P-SAF (perpendicular) and SAF (in-plane), vortex Py, and three-layer non-magnetic–ferromagnet–non-magnetic systems with flat quasi-dipole magnetic structures. In the current review, we discuss the biological effects of magnetic discs, the mechanisms of action, and the toxicity in alternating or rotating magnetic fields in vitro and in vivo. Based on the experimental data presented in the literature, we conclude that the targeted and remotely controlled magnetic field nanoscalpel is an effective and safe instrument for cancer therapy or theranostics.


2020 ◽  
Author(s):  
Xiaoshuai Zhu ◽  
Thomas Wiegelmann

<div><span><span lang="en-US">Both magnetic field and plasma play important roles in activities in the solar atmosphere. Unfortunately only the magnetic fields in the photosphere are routinely measured precisely. We aim to extrapolate these photospheric </span></span><span><span lang="en-US">vector magnetograms upwards into  the solar atmosphere. In this work </span><span lang="en-US">we are mainly interested in reconstructing the upper solar photosphere </span><span lang="en-US">and chromosphere. In these layers magnetic and non-magnetic forces are equally important. Consequently we have to compute an equilibrium of plasma </span></span><span><span lang="en-US">and magnetic forces with a magnetohydrostatic model. A optimization approach which minimize a functional defined by the magnetohydrostatic equations is used in the model. In this talk/poster, I will present a strict test of the new code with a radiative MHD simulation and its first application to a high resolution vector magnetogram measured by SUNRISE/IMaX.</span></span></div>


2000 ◽  
Vol 18 (4) ◽  
pp. 601-610 ◽  
Author(s):  
STANLEY HUMPHRIES ◽  
JOHN PETILLO

Beam-generated magnetic fields strongly influence the behavior of relativistic electron guns. Existing methods used in ray-tracing codes have limited accuracy and may not correctly represent nonlaminar beams. We describe a technique for the magnetic field calculation in a two-dimensional code based on the assignment of particle currents to the faces of elements in the mesh used for the electrostatic calculation. The balanced calculation of electric and magnetic forces in the same iteration cycle reduces the possibility of numerical filamentation instabilities. With simple rules of assignment on boundary faces, the method also handles field contributions of electrode currents. Several benchmark calculations performed on conformal meshes illustrate the versatility of the technique.


2018 ◽  
Author(s):  
P. J. Hore

AbstractProlonged exposure to weak (~1 μT) extremely-low-frequency (ELF, 50/60 Hz) magnetic fields has been associated with an increased risk of childhood leukaemia. One of the few biophysical mechanisms that might account for this link involves short-lived chemical reaction intermediates known as radical pairs. In this report, we use spin dynamics simulations to derive an upper bound of 10 parts per million on the effect of a 1 μT ELF magnetic field on the yield of a radical pair reaction. By comparing this figure with the corresponding effects of changes in the strength of the Earth’s magnetic field, we conclude that if exposure to such weak 50/60 Hz magnetic fields has any effect on human biology, and results from a radical pair mechanism, then the risk should be no greater than travelling a few kilometres towards or away from the geomagnetic north or south pole.


1990 ◽  
Vol 259 (4) ◽  
pp. C687-C692 ◽  
Author(s):  
J. J. Carson ◽  
F. S. Prato ◽  
D. J. Drost ◽  
L. D. Diesbourg ◽  
S. J. Dixon

Electromagnetic fields have been reported to cause a variety of biological effects. It has been hypothesized that many of these phenomena are mediated by a primary effect on the concentration of cytosolic free calcium ([Ca2+]i). We investigated the effects of exposure to electromagnetic fields on [Ca2+]i in HL-60 cells using the Ca2(+)-sensitive fluorescent indicator indo-1. Indo-1-loaded cell samples were exposed to a radiofrequency electromagnetic field, a static magnetic field, and a time-varying magnetic field, which were generated by a magnetic resonance imaging (MRI) unit. We found that a 23-min exposure to all three fields, in combination, induced a significant increase in [Ca2+]i of 31 +/- 8 (SE) nM (P less than 0.01, n = 13) from a basal level of 121 +/- 8 nM. Also, cells exposed to only the time-varying magnetic field had a mean [Ca2+]i that was 34 +/- 10 nM (P less than 0.01, n = 11) higher than parallel control samples. Separate exposure to the radio-frequency (6.25 MHz) or static field (0.15 T) had no detectable effects. These results demonstrate that time-varying magnetic fields alter [Ca2+]i and suggest that at least some of the reported biological effects of time-varying magnetic fields may arise from elevation of [Ca2+]i.


Author(s):  
Olivier Sandre ◽  
Coralie Genevois ◽  
Eneko Garaio ◽  
Laurent Adumeau ◽  
Stéphane Mornet ◽  
...  

The present work aims to demonstrate that colloidal dispersions of magnetic iron oxide nanoparticles stabilized with dextran macromolecules placed in an alternating magnetic field can not only produce heat, but also that these particles could be used in vivo for local and non-invasive deposition of a thermal dose sufficient to trigger thermo-induced gene expression. Iron oxide nanoparticles were first characterized in vitro on a bio-inspired setup, and then they were assayed in vivo using a transgenic mouse strain expressing the luciferase reporter gene under transcriptional control of a thermosensitive promoter. Iron oxide nanoparticles dispersions were applied topically on the mouse skin or injected sub-cutaneously with Matrigel™ to generate so called pseudo tumors. Temperature was monitored continuously with a feedback loop to control the power of the magnetic field generator and to avoid overheating. Thermo-induced luciferase expression was followed by bioluminescence imaging 6 hours after heating. We showed that dextran-coated magnetic iron oxide nanoparticles dispersions were able to induce in vivo mild hyperthermia compatible with thermo-induced gene expression in surrounding tissues and without impairing cell viability. These data open new therapeutic perspectives for using mild magnetic hyperthermia as non-invasive modulation of tumor microenvironment by local thermo-induced gene expression or drug release.


Polymers ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1082 ◽  
Author(s):  
Marina V. Novoselova ◽  
Sergey V. German ◽  
Olga A. Sindeeva ◽  
Oleg A. Kulikov ◽  
Olga V. Minaeva ◽  
...  

Although new drug delivery systems have been intensely developed in the past decade, no significant increase in the efficiency of drug delivery by nanostructure carriers has been achieved. The reasons are the lack of information about acute toxicity, the influence of the submicron size of the carrier and difficulties with the study of biodistribution in vivo. Here we propose, for the first time in vivo, new nanocomposite submicron carriers made of bovine serum albumin (BSA) and tannic acid (TA) and containing magnetite nanoparticles with sufficient content for navigation in a magnetic field gradient on mice. We examined the efficacy of these submicron carriers as a delivery vehicle in combination with magnetite nanoparticles which were systemically administered intravenously. In addition, the systemic toxicity of this carrier for intravenous administration was explicitly studied. The results showed that (BSA/TA) carriers in the given doses were hemocompatible and didn’t cause any adverse effect on the respiratory system, kidney or liver functions. A combination of gradient-magnetic-field controllable biodistribution of submicron carriers with fluorescence tomography/MRI imaging in vivo provides a new opportunity to improve drug delivery efficiency.


2019 ◽  
Vol 5 (1) ◽  
pp. eaau7201 ◽  
Author(s):  
Alanna V. Van Huizen ◽  
Jacob M. Morton ◽  
Luke J. Kinsey ◽  
Donald G. Von Kannon ◽  
Marwa A. Saad ◽  
...  

Biological systems are constantly exposed to electromagnetic fields (EMFs) in the form of natural geomagnetic fields and EMFs emitted from technology. While strong magnetic fields are known to change chemical reaction rates and free radical concentrations, the debate remains about whether static weak magnetic fields (WMFs; <1 mT) also produce biological effects. Using the planarian regeneration model, we show that WMFs altered stem cell proliferation and subsequent differentiation via changes in reactive oxygen species (ROS) accumulation and downstream heat shock protein 70 (Hsp70) expression. These data reveal that on the basis of field strength, WMF exposure can increase or decrease new tissue formation in vivo, suggesting WMFs as a potential therapeutic tool to manipulate mitotic activity.


2019 ◽  
Vol 116 (7) ◽  
pp. 2512-2520 ◽  
Author(s):  
Pablo R. Zangara ◽  
Siddharth Dhomkar ◽  
Ashok Ajoy ◽  
Kristina Liu ◽  
Raffi Nazaryan ◽  
...  

A broad effort is underway to improve the sensitivity of NMR through the use of dynamic nuclear polarization. Nitrogen vacancy (NV) centers in diamond offer an appealing platform because these paramagnetic defects can be optically polarized efficiently at room temperature. However, work thus far has been mainly limited to single crystals, because most polarization transfer protocols are sensitive to misalignment between the NV and magnetic field axes. Here we study the spin dynamics of NV−13C pairs in the simultaneous presence of optical excitation and microwave frequency sweeps at low magnetic fields. We show that a subtle interplay between illumination intensity, frequency sweep rate, and hyperfine coupling strength leads to efficient, sweep-direction-dependent 13C spin polarization over a broad range of orientations of the magnetic field. In particular, our results strongly suggest that finely tuned, moderately coupled nuclear spins are key to the hyperpolarization process, which makes this mechanism distinct from other known dynamic polarization channels. These findings pave the route to applications where powders are intrinsically advantageous, including the hyperpolarization of target fluids in contact with the diamond surface or the use of hyperpolarized particles as contrast agents for in vivo imaging.


Sign in / Sign up

Export Citation Format

Share Document