Comparing the Performance of a Nonlinear Energy Harvester in Mono- and Bi-Stable Potentials

Author(s):  
Ravindra Masana ◽  
Mohammed F. Daqaq

The quest to develop broadband vibratory energy harvesters (VEHs) has recently motivated researchers to explore introducing nonlinearities into the harvester’s design. Some research efforts have demonstrated that this new class of nonlinear harvesters can outperform their traditional linear (resonant) counterparts; some others however concluded that nonlinearities can diminish the harvester’s transduction. Through this effort, we compare the performance of a nonlinear VEH operating in mono- and bi-stable potentials. With that objective, we consider an axially-loaded clamped-clamped piezoelectric beam which functions as an energy harvester in the mono-stable (pre-buckling) and bistable (post-buckling) configurations. For the purpose of fair performance comparison, the oscillation frequency around the stable equilibria of the harvester is tuned to equal values in both configurations. The harvester is then subjected to harmonic base excitations of different magnitudes and a slowly-varying frequency which spans a wide range around the tuned oscillation frequency. The output voltage measured across an arbitrarily chosen electric load is used as a relative performance measure. Both numerical and experimental results demonstrate that the shape of the potential function plays an essential role in conjunction with the magnitude of the base excitation to determine whether the bi-stable harvester can outperform the mono-stable one and for what range of frequencies.

Author(s):  
Ravindra Masana ◽  
Mohammed F. Daqaq

This paper aims to experimentally investigate the influence of stiffness-type nonlinearities on the transduction of vibratory energy harvesters (VEHs) under random white and colored excitations. For the purpose of the study, an energy harvester consisting of a clamped-clamped piezoelectric beam bi-morph is considered. The shape of the harvester’s potential function is altered by applying a static compressive axial load at one end of the beam. The axial load permits the harvester to operate with different potential energy characteristics; namely, the mono-stable (pre-buckling) and bi-stable (post-buckling) configurations. The performance of the harvester in both configurations is investigated and compared by tuning the harvester’s oscillation frequencies around the static equilibria such that they have equal values in both scenarios. The harvester is then subjected to random base excitations of different levels, bandwidths, and center frequencies. The variance of the output voltage is measured across an arbitrary, purely resistive load and used for the purpose of performance comparison. Critical conclusions pertinent to the influence of the nonlinearity and relative performance in both configurations are presented and discussed.


2020 ◽  
pp. 107754632097447
Author(s):  
Mohammad Mehdi Meshki ◽  
Ali Salehzadeh Nobari ◽  
Mohammad Homayoune Sadr

In this study, based on parametric excitation originating from airflow oscillation, a novel nonlinear aeroelastic energy harvester is proposed. In this respect, first, the governing equation of the system is derived and studied thoroughly to understand the direct and indirect effects of airflow oscillation on the local and global responses of the system. Then, by using a pseudo-arclength continuation method based on the harmonic balance method, the stable and unstable periodic and quasi-periodic responses of the system are tracked and analyzed. It is demonstrated that the proposed self-parametric (combination parametric and self-excitation) energy harvester can extract more power than the respective nonparametric system for a wide range of amplitudes and frequencies. The gained knowledge of parametric, aeroelastic systems is applicable for both aero-harvesters and other aeroelastic systems undergoing flow oscillation.


Sensors ◽  
2020 ◽  
Vol 20 (20) ◽  
pp. 5808
Author(s):  
Ondrej Rubes ◽  
Zdenek Machu ◽  
Oldrich Sevecek ◽  
Zdenek Hadas

Kinetic piezoelectric energy harvesters are used to power up ultra-low power devices without batteries as an alternative and eco-friendly source of energy. This paper deals with a novel design of a lead-free multilayer energy harvester based on BaTiO3 ceramics. This material is very brittle and might be cracked in small amplitudes of oscillations. However, the main aim of our development is the design of a crack protective layered architecture that protects an energy harvesting device in very high amplitudes of oscillations. This architecture is described and optimized for chosen geometry and the resulted one degree of freedom coupled electromechanical model is derived. This model could be used in bistable configuration and the model is extended about the nonlinear stiffness produced by auxiliary magnets. The complex bistable vibration energy harvester is simulated to predict operation in a wide range of frequency excitation. It should demonstrate typical operation of designed beam and a stress intensity factor was calculated for layers. The whole system, without presence of cracks, was simulated with an excitation acceleration of amplitude up to 1g. The maximal obtained power was around 2 mW at the frequency around 40 Hz with a maximal tip displacement 7.5 mm. The maximal operating amplitude of this novel design was calculated around 10 mm which is 10-times higher than without protective layers.


2017 ◽  
Vol 28 (19) ◽  
pp. 2810-2822 ◽  
Author(s):  
Abdullah Nammari ◽  
Hamzeh Bardaweel

Over the past decade, there has been special interest in developing nonlinear energy harvesters capable of operating over a wideband frequency spectrum. Chief among the nonlinear energy harvesting techniques is magnetic levitation–based energy harvesting. Nonetheless, current nonlinear magnetic levitation–based energy harvesting approaches encapsulate design challenges. This work investigates some of the design issues and limitations faced by traditional magnetic levitation–based energy harvesters such as damping schemes and stiffness nonlinearities. Both experiment and model are used to quantify and evaluate damping regimes and stiffness nonlinearities present in magnetic levitation–based energy harvesters. Results show that dry friction, mostly ignored in magnetic levitation–based energy harvesting literature, contributes to the overall energy dissipation. Measured and modeled magnetic forces–displacement curves suggest that stiffness nonlinearities are weak over moderate distances. An enhanced design utilizing a combination of mechanical and magnetic springs is introduced to overcome some of these limitations. A non-dimensional model of the proposed design is developed and used to investigate the enhanced architecture. The unique potential energy profile suggests that the proposed nonlinear energy harvester outperforms the linear version by steepening the displacement response and shifting the resonance frequency, resulting in a larger bandwidth for which power can be harvested.


2021 ◽  
Vol 13 (22) ◽  
pp. 12807
Author(s):  
Md Fahim Tanvir Hossain ◽  
Samer Dessouky ◽  
Ayetullah B. Biten ◽  
Arturo Montoya ◽  
Daniel Fernandez

This study aims at designing and developing a new technique to harvest solar energy from asphalt pavements. The proposed energy harvester system consists of a pavement solar box with a transparent polycarbonate sample and a thin-film solar panel. This device mechanism can store energy in a battery charged over daytime and later convert it into electric power as per demand. A wide range of polycarbonate samples containing different thicknesses, elastic moduli, and light transmission properties were tested to select the most efficient materials for the energy harvester system. Transmittance Spectroscopy was conducted to determine the percent light transmission property of the polycarbonate samples at different wavelengths in the visible spectrum. Finite Element Analysis modeling of the pavement–tire load system was conducted to design the optimal energy harvester system under static load. It was followed by the collection of data on the generated power under different weather conditions. The energy harvesters were also subjected to vehicular loads in the field. The results suggest that the proposed pavement solar box can generate an average of 23.7 watts per square meter continuously over 6 h a day under sunny conditions for the weather circumstances encountered in South Texas while providing a slightly smaller power output in other weather circumstances. It is a promising self-powered and low-cost installation technique that can be implemented at pedestrian crossings and intersections to alert distracted drivers at the time of pedestrian crossing, which is likely to improve pedestrian safety.


Author(s):  
R. L. Harne ◽  
K. W. Wang

It has recently been shown that negligible linear stiffness or very small negative stiffness may be the most beneficial stiffness nonlinearities for vibrational energy harvesters due to the broadband, amplified responses which result from such designs. These stiffness characteristics are often achieved by providing axial compression along the length of a harvester beam. Axial compressive forces induced using magnetic or electrostatic effects are often easily tuned; however, electrostatic energy harvesters are practically limited to microscale realizations and magnets are not amenable in a variety of applications, e.g. self-powered biomedical implants or when the harvesters are packaged with particular circuits. On the other hand, mechanically-induced pre-compression methods considered to date are less able to achieve fine control of the applied force which is typically governed by a pre-compression distance that has practical constraints such as resolution and tolerance. This notably limits the harvester’s ability to precisely obtain the desired near-zero or small negative linear stiffness and thus inhibits the favorable dynamical phenomena that lead to high energy conversion performance. Inspired by the wing motor structure of the common diptera (fly), this research explores an alternative energy harvester design and configuration that considerably improves control over pre-compression factors and their influence upon performance-improving dynamics. A pre-compressed harvester beam having an axial suspension on an end is investigated through theoretical and numerical studies and experimental efforts. Suspension and pre-loading adjustments are found to enable comprehensive variation over the resulting dynamics. It is shown that the incorporation of adjustable axial suspension into the design of pre-compressed energy harvester beams is therefore a versatile, all-mechanical means to enhance the performance of such devices and ensure favorable dynamics are retained across a wide range of excitation conditions.


2017 ◽  
Vol 29 (6) ◽  
pp. 1196-1205 ◽  
Author(s):  
Brian P Bernard ◽  
Brian P Mann

Dynamic magnifiers and coupled harvester arrays are two strategies that have been developed over the past decade to improve the peak power and bandwidth of energy harvesters. However, both of these methods come with drawbacks. Dynamic magnifiers require retuning since they change the frequency of the peak response and some designs result in decreased power per unit mass. Coupled harvester arrays can increase the overall bandwidth, but also include central valleys between the peaks and a significant increase in the cost. This article describes an excited dynamic magnifier which borrows design characteristics from both traditional dynamic magnifiers and harvester arrays in order to overcome these drawbacks. A hardening-type nonlinear tuned energy harvester with excited dynamic magnifier can achieve higher peak power, greater power per unit mass, and wider bandwidth without the need for retuning and for a minimal added cost as compared to the uncoupled harvester. Most importantly, the addition of a dynamic energy harvester also significantly improves performance in the frequency range of coexisting solutions by expanding the basin of attraction for the larger amplitude solution.


2014 ◽  
Vol 1051 ◽  
pp. 932-936
Author(s):  
Mun Heng Lam ◽  
Hanim Salleh

This paper presents work on improving piezoelectric energy harvesters. Harvesting energy from vibrations has received massive attention due to it being a renewable energy source that has a wide range of applications. Over the years of development, there is always research to further improve and optimise piezoelectric energy harvesters. For this paper, the piezoelectric specimen is made of PZT (Lead Zirconate Titanate), brass reinforced and has 31.8mm length, 12.7mm width and 0.511mm thick. An external beam is implemented to provide deflection amplification which in turn increases the output of the energy harvester. Depending on the configuration of the external beam, it can amplify output voltage from 100% to 300%.


Sensors ◽  
2019 ◽  
Vol 19 (15) ◽  
pp. 3247 ◽  
Author(s):  
Mathieu Gratuze ◽  
Abdul Hafiz Alameh ◽  
Frederic Nabki

With the rise of the Internet of Things (IoT) and the ever-increasing number of integrated sensors, the question of powering these devices represents an additional challenge. The traditional approach is to use a battery; however, harvesting energy from the environment seems to be the most practical approach. To that end, the use of piezoelectric MEMS energy has been proven as a potential power source in a wide range of applications. In this work, a proof of concept for a new architecture for MEMS energy harvesters is presented. The influence of the dimensions and different characteristics of these designs is discussed. These designs have been proven to be resilient to process variation thanks to their unique architecture. This work presents the use of vibration enhancement petals in order to widen the bandwidth of the energy harvester and provide a non-linear frequency response. The use of these vibration enhancement petals has allowed the fabrication of three design variations, each using an area of 1700 µm by 1700 µm. These designs have an operating bandwidth between 3.9 kHz and 14.5 kHz and can be scaled to achieve other targeted resonant frequencies.


Author(s):  
Andres F. Arrieta ◽  
Peter Hagedorn ◽  
Alper Erturk ◽  
Daniel J. Inman

Vibration based energy harvesting has received extensive attention in the engineering community in the past decade. It has been mainly focused on linear electromechanical devices excited close or at resonance, where these systems operate optimally. Although much progress has been achieved in this research direction, real harvesting devices would seldom operate in environment with such idealized conditions. Recently, the idea to use nonlinearity to enhance the performance for energy harvesters has been introduced. Nonlinear devices have been shown to have the potential to operate over a wider band of frequencies and deliver higher power. Bistable composites are a new type of composites exhibiting two stable states so far considered for morphing applications. In this paper, we propose to exploit the nonlinear behaviour of a bistable composite plate with bonded flexible piezoelectric patches to obtain a nonlinear energy harvesting device. The response of the structure is investigated revealing several large amplitude nonlinear phenomena over a wide range of frequencies. Resistor sweeps are conducted for representative dynamic regimes giving the optimal electrical load for each type of oscillations. The observed characteristics give the proposed device the potentiality for broadband energy harvesting.


Sign in / Sign up

Export Citation Format

Share Document