Exploring Innovation Opportunities in Energy Harvesting Using Functional Modeling Approaches

Author(s):  
Jason M. Weaver ◽  
Kristin L. Wood ◽  
Richard H. Crawford ◽  
Dan Jensen

Energy harvesting is a promising and evolving field of research capable of supplying power to systems in a broad range of applications. Energy harvesting encompasses many distinct technologies, including photovoltaic panels, wind turbines, kinetic motion harvesters, and thermal generators. Each technology utilizes different processes to transform energy from the environment into usable electrical energy. As such, there are many analogous functions and processes that are common or similar across the various domains. To leverage and understand these functions and processes, functional modeling approaches are needed to identify these similarities and functions ripe for innovation in new systems. This paper describes a method for modeling the functional architectures of a sample set of energy harvesters, using a functional common basis from the literature. Vector space analysis is used to identify patterns and correlations in the use of functions across different products and energy-harvesting domains in the sample set. The resulting analysis indicates that systems in the same domain usually have very similar function structures, differing only by the addition or removal of a few driving or supporting functions. Systems in different domains also typically have similar structures, with the substitution of different material and energy flows into the system. A generalized functional model for energy harvesting is described, along with possible design ramifications and key opportunities to innovate. Several recommendations are given for the continued development and improvement of the functional common basis and, more generally, functional modeling methodologies. These include improved standardization and explanation of abstract functions, such as blending with the environment, and of organizational conventions to improve consistency.

Author(s):  
Lin Dong ◽  
Frank T. Fisher

Vibration-based energy harvesting has been widely investigated to as a means to generate low levels of electrical energy for applications such as wireless sensor networks. However, due to the fact that vibration from the environment is typically random and varies with different magnitudes and frequencies, it is a challenge to implement frequency matching in order to maximize the power output of the energy harvester with a wider frequency bandwidth for applications where there is a time-dependent, varying source frequency. Possible solutions of frequency matching include widening the bandwidth of the energy harvesters themselves in order to implement frequency matching and to perform resonance-based tuning approach, the latter of which shows the most promise to implement a frequency matching design. Here three tuning strategies are discussed. First a two-dimensional resonant frequency tuning technique for the cantilever-geometry energy harvesting device which extended previous 1D tuning approaches was developed. This 2D approach could be used in applications where space constraints impact the available design space of the energy harvester. In addition, two novel resonant frequency tuning approaches (tuning via mechanical stretch and tuning via applied bias voltage, respectively) for electroactive polymer (EAP) membrane-based geometry energy harvesters was proposed, such that the resulting changes in membrane tension were used to tune the device for applications targeting variable ambient frequency environments.


2019 ◽  
Author(s):  
Mohammadsadegh Saadatzi ◽  
Mohammad Nasser Saadatzi ◽  
Sourav Banerjee

Abstract In the current study, a novel multi-frequency, vibration-based Energy Harvester (EH) is proposed, numerically verified, and experimentally validated. The structural design of the proposed EH is inspired from an inner-ear, snail-shaped structure. In the past decade, scavenging power from environmental sources of vibration has attracted a lot of researchers to the field of energy harvesting. High demands for cleaner and renewable energy sources, limited sources of electrical energy, high depletion rates of nonrenewable sources of energy, and environmental concerns have urged researchers to investigate new structures called Metamaterial energy harvesters to harness electrical potential. The proposed EH is a metamaterial structure which has a Polyvinylidene Difluoride (PVDF) structure incapsulated in an aluminum frame and follows the physics of a mass-in-mass Phononic crystal structure. The PVDF snail-shaped structure is encapsulated inside a silicone matrix with a specific material property. This EH reacts to the environmental vibrations and the encapsulating silicone entraps the kinetic energy within its structure. The EH unit cell behaves as a negative mass in the vicinity of its resonance frequencies. In this paper, the dynamic behavior of the proposed EH is numerically modeled in COMSOL Multiphysics and, subsequently, validated experimentally using a unit cell fabricated in-house.


Author(s):  
Boris Eisenbart ◽  
Kilian Gericke ◽  
Luciënne Blessing

AbstractAuthors across disciplines propose functional modeling as part of systematic design approaches, in order to support and guide designers during conceptual design. The presented research aims at contributing to a better understanding of the diverse functional modeling approaches proposed across disciplines. The article presents a literature review of 41 modeling approaches from a variety of disciplines. The analysis focuses on what is addressed by functional modeling at which point in the proposed conceptual design process (i.e., in which sequence). The gained insights lead to the identification of specific needs and opportunities, which could support the development of an integrated functional modeling approach. The findings suggest that there is no such shared sequence for functional modeling across disciplines. However, a shared functional modeling perspective has been identified across all reviewed disciplines, which could serve as a common basis for the development of an integrated functional modeling approach.


Author(s):  
S. D. Hu ◽  
H. Li ◽  
H. S. Tzou

Piezoelectric materials can be used as electromechanical conversion mechanisms to transfer ambient vibration into electrical energy to power electronic devices. In this study, an elastic ring laminated with a piezoelectric layer on the inner surface is utilized as the basic structure for energy harvesting. The piezoelectric layer is uniformly segmented into several energy harvesting patches for practical applications. The generated electrical energy resulting from modal voltages is analyzed under the open-circuit condition. Two modal energy generations are evaluated: one is the energy induced by the membrane oscillation and the other is the energy induced by the bending oscillation. For practical design applications, energy generations are evaluated with respect to ring radius, piezoelectric layer thickness, ring thickness and segment size. The maximal energy of all harvester patches on the ring is calculated to determine the optimal patch locations with respect to various ring modes. By summing up energies generated from all harvesters on the ring, the overall energy is also evaluated Based on the normalizations and assumptions of parameters, results indicate that the larger the segment size is, the less the energy can be generated.


Author(s):  
Claudia Eckert

AbstractFunctional modeling is a very significant part of many different well-known design methodologies. This paper investigates the questions of what functional modeling approaches people use in industry and how they conceptualize functions. Using interviews and the findings from an experiment where 20 individual designers were asked to generate a functional model of a product, the paper highlights the different notions designers associate with the wordfunction. Difficulties associated with functional modeling arise from varied and inconsistent notions of functions as well as wider challenges associated with modeling and the introduction of methods in industry.


Soft Matter ◽  
2021 ◽  
Author(s):  
Ja Min Koo ◽  
Chul Ho Park ◽  
Seungmin Yoo ◽  
Gyeong Won Lee ◽  
Seung Yun Yang ◽  
...  

The concentration gradient in aqueous solutions is a promising source of energy that can be harvested into electrical energy by ion-exchange polymer membranes. In concentration-gradient energy harvesters, ion transport through...


Sensors ◽  
2019 ◽  
Vol 19 (9) ◽  
pp. 2170 ◽  
Author(s):  
Atul Thakre ◽  
Ajeet Kumar ◽  
Hyun-Cheol Song ◽  
Dae-Yong Jeong ◽  
Jungho Ryu

Among the various forms of natural energies, heat is the most prevalent and least harvested energy. Scavenging and detecting stray thermal energy for conversion into electrical energy can provide a cost-effective and reliable energy source for modern electrical appliances and sensor applications. Along with this, flexible devices have attracted considerable attention in scientific and industrial communities as wearable and implantable harvesters in addition to traditional thermal sensor applications. This review mainly discusses thermal energy conversion through pyroelectric phenomena in various lead-free as well as lead-based ceramics and polymers for flexible pyroelectric energy harvesting and sensor applications. The corresponding thermodynamic heat cycles and figures of merit of the pyroelectric materials for energy harvesting and heat sensing applications are also briefly discussed. Moreover, this study provides guidance on designing pyroelectric materials for flexible pyroelectric and hybrid energy harvesting.


Energies ◽  
2018 ◽  
Vol 11 (7) ◽  
pp. 1850 ◽  
Author(s):  
Hassan Elahi ◽  
Marco Eugeni ◽  
Paolo Gaudenzi

From last few decades, piezoelectric materials have played a vital role as a mechanism of energy harvesting, as they have the tendency to absorb energy from the environment and transform it to electrical energy that can be used to drive electronic devices directly or indirectly. The power of electronic circuits has been cut down to nano or micro watts, which leads towards the development of self-designed piezoelectric transducers that can overcome power generation problems and can be self-powered. Moreover, piezoelectric energy harvesters (PEHs) can reduce the need for batteries, resulting in optimization of the weight of structures. These mechanisms are of great interest for many researchers, as piezoelectric transducers are capable of generating electric voltage in response to thermal, electrical, mechanical and electromagnetic input. In this review paper, Fluid Structure Interaction-based, human-based, and vibration-based energy harvesting mechanisms were studied. Moreover, qualitative and quantitative analysis of existing PEH mechanisms has been carried out.


2014 ◽  
Vol 695 ◽  
pp. 757-760 ◽  
Author(s):  
Susilo Sidik ◽  
Azma Putra ◽  
Swee Leong Kok

Harvesting ambient acoustics for conversion into usable electricity provides a potential power source for emerging technologies including wireless sensor networks. Acoustic energy harvesters convert energy from acoustic waves to electrical energy. Here acoustic energy harvesting from ambient noise utilizing flexural vibration of a flexible panel is investigated. A flexural vibration from the panel is use to extract more energy from the ambient acoustics where piezoelectric materials of PVDF films are attached around the plate edges. This study found that the energy harvesting can be obtained with a maximum output power of 480 pW at 400 kΩ load resistance.


2019 ◽  
Vol 113 ◽  
pp. 03010 ◽  
Author(s):  
Alessandra Cuneo ◽  
Stefano Barberis ◽  
Alberto Traverso ◽  
Paolo Silvestri

There are several small energy sources that can be exploited to provide useful energy: small temperature differences, mechanical vibrations, flow variations, latent exhausts are just some examples. The recovery of such common and small energy sources, usually wasted, for example with the conversion into useful amounts of electrical energy, is called energy harvesting. Energy harvesting allows low-power embedded devices to be powered from naturally-occurring or unwanted environmental energy (e.g. pressure or temperature difference). The main aim in the last years of researches in such field, was the increasing of the efficiency of such components, with a higher power output and a smaller size. At present, a wide range of systems incorporating energy harvesters are now available commercially, all of them specific to certain types of energy source. Energy harvesting from dissipation processes such as fluid lamination is a challenge for many different applications. In addition, control valves to dissipate overpressures are common usage of many plants and systems. This paper surveys the market opportunities of such harvesting systems, considering the trade-offs affecting their efficiency, their applicability, and ease of deployment. Particular attention will be devoted to small energy harvesters than can exploit small expansions, such as from lamination valves or to systems that can feed mini sensors from small pressure drops, promising compactness, efficiency and cost effectiveness.


Sign in / Sign up

Export Citation Format

Share Document