Experimental and Numerical Validation of Conical Strainer Fluid/Structural Performance Model

Author(s):  
M. Carlomagno ◽  
S. Rossin ◽  
M. Delvecchio ◽  
A. Anichini

Temporary conical strainers are widely employed in the Oil & Gas industry as filtering devices in the Centrifugal Compressors suction line. They protect compressor stages from the ingestion of foreign objects whether coming from dirty process gas or left in the pipeline after its construction. Very few literature and research papers are available on the fluid dynamic and structural performance of conical strainers. The purpose of this work is to plug this gap by the definition of a theoretical-experimental model for the characterization of the pressure drop and mechanical resistance of these devices. Starting from the definition of the main fluid dynamics and geometric variables which influence the performances, an experimental campaign has been performed in order to derive the relationship governing the pressure drop behavior. The model efficacy has been confirmed by a CFD analysis, which also allowed a qualitative insight review into the dynamics of velocity and turbulence intensity fields. Further tests have been performed in order to validate the model at off-design points. As far as the structural analysis is concerned, several FEM models and DOE techniques have been implemented in order to define relationships for bust pressure computation and feasible design improvements with respect to the current state of the art. Besides fluid dynamic and structural correlations, the notable achievements of this work are the definition of best pressure static probes positioning and the maximum clogging level that a strainer can withstand before collapse. Furthermore, some guidelines are given in order to prevent pipeline resonance and acoustic fatigue caused by the interaction between strainer turbulence and compressor inlet flow.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Farideh Haghighi ◽  
Zahra Talebpour ◽  
Amir Sanati-Nezhad

AbstractFlow distributor located at the beginning of the micromachined pillar array column (PAC) has significant roles in uniform distribution of flow through separation channels and thus separation efficiency. Chip manufacturing artifacts, contaminated solvents, and complex matrix of samples may contribute to clogging of the microfabricated channels, affect the distribution of the sample, and alter the performance of both natural and engineered systems. An even fluid distribution must be achieved cross-sectionally through careful design of flow distributors and minimizing the sensitivity to clogging in order to reach satisfactory separation efficiency. Given the difficulty to investigate experimentally a high number of clogging conditions and geometries, this work exploits a computational fluid dynamic model to investigate the effect of various design parameters on the performance of flow distributors in equally spreading the flow along the separation channels in the presence of different degrees of clogging. An array of radially elongated hexagonal pillars was selected for the separation channel (column). The design parameters include channel width, distributor width, aspect ratio of the pillars, and number of contact zone rows. The performance of known flow distributors, including bifurcating (BF), radially interconnected (RI), and recently introduced mixed-mode (MMI) in addition to two new distributors designed in this work (MMII and MMIII) were investigated in terms of mean elution time, volumetric variance, asymmetry factors, and pressure drop between the inlet and the monitor line for each design. The results show that except for pressure drop, the channel width and aspect ratio of the pillars has no significant influence on flow distribution pattern in non-clogged distributors. However, the behavior of flow distributors in response to clogging was found to be dependent on width of the channels. Also increasing the distributor width and number of contact zone rows after the first splitting stage showed no improvement in the ability to alleviate the clogging. MMI distributor with the channel width of 3 µm, aspect ratio of the pillars equal to 20, number of exits of 8, and number of contact zones of 3 exhibited the highest stability and minimum sensitivity to different degrees of clogging.


2011 ◽  
Vol 133 (6) ◽  
Author(s):  
Simone Mancin ◽  
Claudio Zilio ◽  
Luisa Rossetto ◽  
Alberto Cavallini

Because of their interesting heat transfer and mechanical properties, metal foams have been proposed for several different applications, thermal and structural. This paper aims at pointing out the effective thermal fluid dynamic behavior of these new enhanced surfaces, which present high heat transfer area per unit of volume at the expense of high pressure drop. The paper presents the experimental heat transfer and pressure drop measurements relative to air flowing in forced convection through four different aluminum foams, when electrically heated. The tested aluminum foams present 5, 10, 20 and 40 PPI (pores per inch), porosity around 0.92–0.93, and 0.02 m of foam core height. The experimental heat transfer coefficients and pressure drops have been obtained by varying the air mass flow rate and the electrical power, which has been set at 25.0 kW m−2, 32.5 kW m−2, and 40.0 kW m−2. The results have been compared against those measured for 40 mm high samples, in order to study the effects of the foam core height on the heat transfer. Moreover, predictions from two recent models are compared with heat transfer coefficient and pressure drop experimental data. The predictions are in good agreement with experimental data.


2017 ◽  
Vol 23 (3) ◽  
pp. 311-320 ◽  
Author(s):  
R.A.F. Oliveira ◽  
G.H. Justi ◽  
G.C. Lopes

In a cyclone design, pressure drop and collection efficiency are two important performance parameters to estimate its implementation viability. The optimum design provides higher efficiencies and lower pressure drops. In this paper, a grid independence study was performed to determine the most appropriate mesh to simulate the two-phase flow in a Stairmand cyclone. Computational fluid dynamic (CFD) tools were used to simulate the flow in an Eulerian-Lagrangian approach. Two different mesh structure, one with wall-refinement and the other with regular elements, and several mesh sizes were tested. The grid convergence index (GCI) method was applied to evaluate the result independence. The CFD model results were compared with empirical correlations from bibliography, showing good agreement. The wall-refined mesh with 287 thousand elements obtained errors of 9.8% for collection efficiency and 14.2% for pressure drop, while the same mesh, with regular elements, obtained errors of 8.7% for collection efficiency and 0.01% for pressure drop.


Author(s):  
Sean Garceau ◽  
Amar Jawalkar ◽  
Ryan McKennon ◽  
Christopher Moffatt ◽  
Anthony Pocengal ◽  
...  

Abstract The Oil & Gas industry and environmental agencies around the world are working to find solutions to reduce greenhouse gas (GHG) emissions. A comprehensive study by the US EPA found that emissions from compressor stations, blow down and purge, accounted for 97.7 Bscf or just over 31% of the total methane emissions attributed to the Natural Gas industry. [1] With methane (CH4) having 25 times the impact on global warming compared to carbon dioxide (CO2), and global legislation like the Regulations Respecting Reduction in the Release of Methane and Certain Volatile Organic Compounds Upstream Oil and Gas Sector (or also called Canadian Methane Rule) and regional methane reduction regulations, developing solutions to further mitigate methane emissions from process gas vents and centrifugal gas compressor seals becomes necessary as the industry moves towards near-zero targets. This paper addresses the design requirements and selection of a process gas vent recapture system and primary dry seal vent recapture system. In addition, this paper will review the design consideration during the design phase to the data collected during site operation.


2007 ◽  
Vol 47 (1) ◽  
pp. 309 ◽  
Author(s):  
S.I. Mackie ◽  
S.H. Begg ◽  
C. Smith ◽  
M.B. Welsh

Business underperformance in the upstream oil and gas industry, and the failure of many decisions to return expected results, has led to a growing interest over the past few years in understanding the impacts of decisionmaking tools and processes and their relationship to decision outcomes. A primary observation is that different decision types require different decision-making approaches to achieve optimal outcomes.Optimal decision making relies on understanding the types of decisions being made and tailoring the type of decision with the appropriate tools and processes. Yet the industry lacks both a definition of decision types and any guidelines as to what tools and processes should be used for what decisions types. We argue that maximising the chances of a good outcome in real-world decisions requires the implementation of such tailoring.


Energies ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 2090 ◽  
Author(s):  
Guglielmo Lomonaco ◽  
Giacomo Alessandroni ◽  
Walter Borreani

Accelerator Driven Systems (ADS) seem to be a good solution for safe nuclear waste transmutation. One of the most important challenges for this kind of machine is the target design, particularly for what concerning the target cooling system. In order to optimize this component a CFD-based approach has been chosen. After the definition of a reference design (Be target cooled by He), some parameters have been varied in order to optimize the thermal-fluid-dynamic features. The final optimized target design has an increased security margin for what regarding Be melting and reduces the maximum coolant velocity (and consequently even more the pressure drops).


Author(s):  
M.R. Khosravi Nikou ◽  
M.R. Ehsani ◽  
M. Davazdah Emami

This paper describes the results of computational fluid dynamic modeling of hydrodynamics, heat and mass transfer simultaneously in Flexipac 1Y operated under a counter-current gas-liquid flow condition. The simulation was performed for a binary mixture of methanol-isopropanol distillation. The pressure drop, the height of equivalent to theoretical plate (HETP) and temperature distribution across the column were calculated and compared with experimental data. The mean absolute relative error (MARE) between CFD predictions and experimental data for the pressure drop, HETP and temperature profile are 20.7%, 12.9% and 2.8%, respectively.


Author(s):  
Francesco Trasino ◽  
Michele Bozzolo ◽  
Loredana Magistri ◽  
Aristide F. Massardo

This paper is focused on the performance of the 1 MW plant designed and developed by Rolls-Royce Fuel Cell Systems Limited. The system consists of a two stage turbogenerator coupled with pressure vessels containing the fuel cell stack, internal reformer, cathode ejector, anode ejector, and off-gas burner. While the overall scheme is relatively simple, due to the limited number of components, the interaction between the components is complex and the system behavior is determined by many parameters. In particular, two important subsystems such as the cathode and the anode recycle loops must be carefully analyzed also considering their interaction with and influence on the turbogenerator performance. The system performance model represents the whole, and each physical component is modeled in detail as a subsystem. The component models have been validated or are under verification. The model provides all the operating parameters in each characteristic point of the plant and a complete distribution of thermodynamics and chemical parameters inside the solid oxide fuel cell (SOFC) stack and reformer. In order to characterize the system behavior, its operating envelope has been calculated taking into account the effect of ambient temperature and pressure, as described in the paper. Given the complexity of the system, various constraints have to be considered in order to obtain a safe operating condition not only for the system as a whole but also for each of its parts. In particular each point calculated has to comply with several constraints such as stack temperature distribution, maximum and minimum temperatures, and high and low pressure spool maximum rotational speeds. The model developed and the results presented in the paper provide important information for the definition of an appropriate control strategy and a first step in the development of a robust and optimized control system.


Author(s):  
Dong Woo Kim ◽  
Mohd Hairil Mohd ◽  
Byeong Joon Lee ◽  
Do Kyun Kim ◽  
Jung Kwan Seo ◽  
...  

Precisely evaluation of the reliability of aging structure is essential, particularly in the oil gas industry where inaccurate predictions of structural performance may have significant hazardous consequences. Related to this issue, it is important to predict the corrosion behavior of the gas pipeline structure used in the production of gas in subsea area. As corrosion is concerned, the effects of pipeline failure due to significant reduction of burst strength will make it hard for the pipeline operator to maintain the serviceability of pipelines. Therefore related to this problem, the resistance service of the pipeline is assessed by means of burst strength capacity. In this study, the critical part of the corrosion along 2.4 km pipeline is assessed using two approaches; empirical design codes formula and ANSYS numerical analysis. The future integrity of the pipeline is then assessed to predict the remaining year in service for the aging pipeline. The results and outcomes of the present study will be useful for evaluating the pipeline integrity as well as the prediction of the remaining life of in service aging pipeline structures.


Author(s):  
L Chen ◽  
W Zhang ◽  
F Sun

A thermodynamic model of an open cycle gas turbine power plant with a refrigeration cycle for compressor inlet air cooling with pressure drop irreversibilities is established using finite-time thermodynamics in Part 1 of this article. The flow processes of the working fluid with the pressure drops of the working fluid and the size constraints of the real power plant are modelled. There are 12 flow resistances encountered by the working fluid stream for the cycle model. Three of these, the friction through the blades, vanes of the compressor, and the turbines, are related to the isentropic efficiencies. The remaining flow resistances are always present because of the changes in the flow cross-section at the mixing chamber inlet and outlet, the compressor inlet and outlet, the combustion chamber inlet and outlet, the heat exchanger inlet and outlet, and the turbine inlet and outlet. These resistances associated with the flow through various cross-sectional areas are derived as functions of the mixing chamber inlet relative pressure drop, and they control the air flowrate and the net power output. The analytical formulae about the power output, efficiency, and other coefficients are derived with the 12 pressure drop losses. The numerical examples show that the dimensionless power output reaches its maximum at the optimal value and that the dimensionless power output and the thermal efficiency reach their maximum values at the optimal values of the compressor fore-stages pressure ratio of the inverse Brayton cycle.


Sign in / Sign up

Export Citation Format

Share Document