On Small Scale LNG Concepts

2021 ◽  
Author(s):  
Rainer Kurz ◽  
Min Ji ◽  
Griffin Beck ◽  
Timothy C. Allison

Abstract The different economics of small scale LNG plants put more emphasis on capital expenses over process efficiency, and thus favors simpler refrigeration cycles. We typically find reverse Brayton cycles, or SMR (Single mixed refrigerant) cycles. These cycles have specific requirements to the compression equipment, and typically have smaller drivers, either electric drives or gas turbines. The relationship between output, driver size, and process preferences is explained. The type of compressors, and expanders needed are discussed, together with thoughts and the driver preferences. This includes the different control methods that can be used, both for the cycle adaptation, as well as the related control of the compressors, expanders, valves and drivers. Equipment performance maps are created to highlight the required different operating conditions. This result allows for subsequent optimization discussions.

Author(s):  
Alessio Pappa ◽  
Laurent Bricteux ◽  
Pierre Bénard ◽  
Ward De Paepe

Abstract Considering the growing interest in Power-to-Fuel, i.e. production of H2 using electrolysis to store excess renewable electricity, combustion-based technologies still have a role to play in the future of power generation. Especially in a decentralized production with small-scale cogeneration, micro Gas Turbines (mGTs) offer great advantages related to their high adaptability and flexibility, in terms of operation and fuel. Hydrogen (or hydrogen enriched methane) combustion is well-known to lead to flame and combustion instabilities. The high temperatures and reaction rates reached in the combustor can potentially lead to flashback. In the past, combustion air humidification (i.e. water addition) has proven effective to reduce temperatures and reaction rates, leading to significant NOx emission reductions. Therefore, combustion air humidification can open a path to stabilize hydrogen combustion in a classical mGT combustor. However accurate data assessing the impact of humidification on the combustion is still missing for real mGT combustor geometries and operating conditions. In this framework, this paper presents a comparison between pure methane and hydrogen enriched methane/air combustions, with and without combustion air humidification, in a typical mGT combustion chamber (Turbec T100) using Large Eddy Simulations (LES) analysis. In a first step, the necessary minimal water dilution, to reach stable and low emissions combustion with hydrogen, was assessed using a 1D approach. The one-dimensional unstretched laminar flame is computed for both pure methane (reference case) and hydrogen enriched methane/air combustion cases. The results of this comparison show that, for the hydrogen enriched combustion, the same level of flame speed as in the reference case can be reached by adding 10% (in mass fraction) of water. In a second step, the feasibility and flexibility of humidified hydrogen enriched methane/air combustion in an industrial mGT combustor have been demonstrated by performing high fidelity LES on a 3D geometry. Results show that steam dilution helped to lower the reactivity of hydrogen, and thus prevents flashback, enabling the use of hydrogen blends in the mGT at similar CO levels, compared to the reference case. These results will help to design future combustor towards more stability.


Author(s):  
Juha Kaikko ◽  
Jari L. H. Backman ◽  
Lasse Koskelainen ◽  
Jaakko Larjola

Externally-fired microturbines (EFMT) yield promising performance in small-scale utilization of biofuels. As in larger gas turbines, the part-load performance of the EFMT is very sensitive to the selected power control method, and in general subject to severe degradation at part load. The control parameters typically include the maximum combustion gas temperature or turbine inlet temperature and the speed of the shaft. At the design point, power generation efficiency can be increased by allowing a fraction of air to bypass the burner and the combustion gas – air heat exchanger. At the same time the heat exchanger size is increased. Therefore, the by-pass flow affects the optimal sizing of the EFMT as well. In this paper, the effect of by-pass flow on the part-load performance of a single-shaft EFMT in combined heat and power generation is analyzed. In the application, the microturbine is operated by the heat demand. The control methods incorporate the use of the maximum combustion gas temperature, the speed of the shaft, and the amount of by-pass air. The focus of the study is to determine the economically optimal control scheme for the engine. The economy model uses the profit flow from the EFMT as a criterion. The results show that the inclusion of the by-pass variation in the control methods can improve the economy of temperature-controlled EFMT at part load but has no benefits when using speed control.


2010 ◽  
Vol 25 (2) ◽  
pp. 185-194
Author(s):  
Anna Svedberg ◽  
Tom Lindström

Abstract A pilot-scale fourdrinier former has been developed for the purpose of investigating the relationship between retention and paper formation (features, retention aids, dosage points, etc.). The main objective of this publication was to present the R-F (Retention and formation)-machine and demonstrate some of its fields of applications. For a fine paper stock (90% hardwood and 10% softwood) with addition of 25% filler (based on total solids content), the relationship between retention and formation was investigated for a microparticulate retention aid (cationic polyacrylamide together with anionic montmorillonite clay). The retention-formation relationship of the retention aid system was investigated after choosing standardized machine operating conditions (e.g. the jet-to-wire speed ratio). As expected, the formation was impaired when the retention was increased. Since good reproducibility was attained, the R-F (Retention and formation)-machine was found to be a useful tool for studying the relationship between retention and paper formation.


2019 ◽  
Vol 11 (10) ◽  
pp. 168781401988377
Author(s):  
Yu He ◽  
Zhongming Zhou ◽  
Ping Zou ◽  
Xiaogang Gao ◽  
Kornel F Ehmann

With excellent properties, high-temperature superalloys have become the main application materials for aircraft engines, gas turbines, and many other devices. However, superalloys are typically difficult to machine, especially for the thread cutting. In this article, an ultrasonic vibration–assisted turning system is proposed for thread cutting operations in superalloys. A theoretical analysis of ultrasonic vibration–assisted thread cutting is carried out. An ultrasonic vibration–assisted system was integrated into a standard lathe to demonstrate thread turning in Inconel 718 superalloy. The influence of ultrasonic vibration–assisted machining on workpiece surface quality, chip shape, and tool wear was analyzed. The relationship between machining parameters and ultrasonic vibration–assisted processing performance was also explored. By analyzing the motion relationship between tool path and workpiece surface, the reasons for improved workpiece surface quality by ultrasonic vibration–assisted machining were explained.


Membranes ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 461
Author(s):  
Fu Yang ◽  
Zhengkun Huang ◽  
Jun Huang ◽  
Chongde Wu ◽  
Rongqing Zhou ◽  
...  

Ultrafiltration is a promising, environment-friendly alternative to the current physicochemical-based tannery wastewater treatment. In this work, ultrafiltration was employed to treat the tanning wastewater as an upstream process of the Zero Liquid Discharge (ZLD) system in the leather industry. The filtration efficiency and fouling behaviors were analyzed to assess the impact of membrane material and operating conditions (shear rate on the membrane surface and transmembrane pressure). The models of resistance-in-series, fouling propensity, and pore blocking were used to provide a comprehensive analysis of such a process. The results show that the process efficiency is strongly dependent on the operating conditions, while the membranes of either PES or PVDF showed similar filtration performance and fouling behavior. Reversible resistance was the main obstacle for such process. Cake formation was the main pore blocking mechanism during such process, which was independent on the operating conditions and membrane materials. The increase in shear rate significantly increased the steady-state permeation flux, thus, the filtration efficiency was improved, which resulted from both the reduction in reversible resistance and the slow-down of fouling layer accumulate rate. This is the first time that the fouling behaviors of tanning wastewater ultrafiltration were comprehensively evaluated, thus providing crucial guidance for further scientific investigation and industrial application.


2021 ◽  
Vol 11 (8) ◽  
pp. 3522
Author(s):  
Konstantinos-Marios Tsitsilonis ◽  
Gerasimos Theotokatos

In this study a coupled thermodynamics and crankshaft dynamics model of a large two-stroke diesel engine was utilised, to map the relationship of the engine Instantaneous Crankshaft Torque (ICT) with the following frequently occurring malfunctioning conditions: (a) change in Start of Injection (SOI), (b) change in Rate of Heat Release (RHR), (c) change in scavenge air pressure, and (d) blowby. This was performed using frequency analysis on the engine ICT, which was obtained through a series of parametric runs of the coupled engine model, under the various malfunctioning and healthy operating conditions. This process demonstrated that engine ICT can be successfully utilised to identify the distinct effects of malfunctions (c) or (d), as they occur individually in any cylinder. Furthermore by using the same process, malfunctions (a) and (b) can be identified as they occur individually for any cylinder, however there is no distinct effect on the engine ICT among these malfunctions, since their effect on the in-cylinder pressure is similar. As a result, this study demonstrates the usefulness of the engine ICT as a non-intrusive diagnostic measurement, as well as the benefits of malfunctioning conditions mapping, which allows for quick and less resource intensive identification of engine malfunctions.


Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 389
Author(s):  
Jinfu Liu ◽  
Zhenhua Long ◽  
Mingliang Bai ◽  
Linhai Zhu ◽  
Daren Yu

As one of the core components of gas turbines, the combustion system operates in a high-temperature and high-pressure adverse environment, which makes it extremely prone to faults and catastrophic accidents. Therefore, it is necessary to monitor the combustion system to detect in a timely way whether its performance has deteriorated, to improve the safety and economy of gas turbine operation. However, the combustor outlet temperature is so high that conventional sensors cannot work in such a harsh environment for a long time. In practical application, temperature thermocouples distributed at the turbine outlet are used to monitor the exhaust gas temperature (EGT) to indirectly monitor the performance of the combustion system, but, the EGT is not only affected by faults but also influenced by many interference factors, such as ambient conditions, operating conditions, rotation and mixing of uneven hot gas, performance degradation of compressor, etc., which will reduce the sensitivity and reliability of fault detection. For this reason, many scholars have devoted themselves to the research of combustion system fault detection and proposed many excellent methods. However, few studies have compared these methods. This paper will introduce the main methods of combustion system fault detection and select current mainstream methods for analysis. And a circumferential temperature distribution model of gas turbine is established to simulate the EGT profile when a fault is coupled with interference factors, then use the simulation data to compare the detection results of selected methods. Besides, the comparison results are verified by the actual operation data of a gas turbine. Finally, through comparative research and mechanism analysis, the study points out a more suitable method for gas turbine combustion system fault detection and proposes possible development directions.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Jamila S. Al Malki ◽  
Nahed Ahmed Hussien ◽  
Fuad Al Malki

Abstract Background Toxoplasmosis resulting from infection with the Toxoplasma parasite has become an endemic disease worldwide. Recently, a few studies have reported a high prevalence of Toxoplasmosis infections among Saudi Arabian women. This disease could become life threatening for pregnant women and for immunodeficient people. There is evidence that infections during pregnancy, especially in the early stages, are associated with neurodevelopmental disorders. Autism disorder represents one of the most common neurodevelopmental disorders worldwide; it is associated with delayed language development, weak communication interaction, and repetitive behavior. The relationship between prenatal toxoplasmosis and autism in childhood remains unclear. The present study aims to report a link between maternal toxoplasmosis and autistic offspring among Saudi Arabian women. Method Blood samples (36 maternal, 36 from their non-autistic children, and 36 from their autistic children) were collected for serological and molecular evaluation. Results A toxoplasmosis infection was reported for 33.34% of participants using an ELISA assay (5.56% IgG+/IgM+, 11.11% IgG−/IgM+, and 16.67% IgG+/IgM-); however, a nested PCR assay targeting B1 toxoplasmosis specific genes recorded positive tests for 80.56% of the samples. In addition, the present study detected several points of mutation of mtDNA including NADH dehydrogenase (ND1, ND4) and Cyt B genes and the nDNA pyruvate kinase (PK) gene for autistic children infected with toxoplasmosis. Conclusion Considering previous assumptions, we suggest that a maternal toxoplasmosis infection could have a role in the development of childhood autism linked to mtDNA and nDNA impairment.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1200
Author(s):  
Yong-Joon Jun ◽  
Seung-ho Ahn ◽  
Kyung-Soon Park

The Green Remodeling Project under South Korea’s Green New Deal policy is a government-led project intended to strengthen the performance sector directly correlated with energy performance among various elements of improvement applicable to building remodeling by replacing insulation materials, introducing new and renewable energy, introducing high-efficiency equipment, etc., with public buildings taking the lead in green remodeling in order to induce energy efficiency enhancement in private buildings. However, there is an ongoing policy that involves the application of a fragmentary value judgment criterion, i.e., whether to apply technical elements confined to the enhancement of the energy performance of target buildings and the prediction of improvement effects according thereto, thus resulting in the phenomenon of another important value criterion for green remodeling, i.e., the enhancement of the occupant (user) comfort performance of target buildings as one of its purposes, being neglected instead. In order to accurately grasp the current status of these problems and to promote ‘expansion of the value judgment criteria for green remodeling’ as an alternative, this study collected energy usage data of buildings actually used by public institutions and then conducted a total analysis. After that, the characteristics of energy usage were analyzed for each of the groups of buildings classified by year of completion, thereby carrying out an analysis of the correlation between the non-architectural elements affecting the actual energy usage and the actual energy usage data. The correlation between the improvement performance of each technical element and the actual improvement effect was also analyzed, thereby ascertaining the relationship between the direction of major policy strategies and the actual energy usage. As a result of the relationship analysis, it was confirmed that the actual energy usage is more affected by the operating conditions of the relevant building than the application of individual strategic elements such as the performance of the envelope insulation and the performance of the high-efficiency system. In addition, it was also confirmed that the usage of public buildings does not increase in proportion to their aging. The primary goal of reducing energy usage in target buildings can be achieved if public sector (government)-led green remodeling is pushed ahead with in accordance with biased value judgment criteria, just as in the case of a campaign to refrain from operating cooling facilities in aging public buildings. However, it was possible to grasp through the progress of this study that the remodeling may also result in the deterioration of environmental comfort and stability, such as the numerical value of the indoor thermal environment. The results of this study have the significance of providing basic data for pushing ahead with a green remodeling policy in which the value judgment criteria for aging existing public buildings are more expanded, and it is necessary to continue research in such a direction that the quantitative purpose of green remodeling, which is to reduce energy usage in aging public buildings, and its qualitative purpose, which is to enhance their environmental performance for occupants’ comfort, can be mutually balanced and secured at the same time.


Sign in / Sign up

Export Citation Format

Share Document