Performance and Emission Assessment on a 3kW Micro Gas Turbine: Comparison of RANS and LES Predictions

2021 ◽  
Author(s):  
Alessio Pappa ◽  
Francesco F. Nicolosi ◽  
Antoine Verhaeghe ◽  
Laurent Bricteux ◽  
Massimiliano Renzi ◽  
...  

Abstract Computational fluid dynamics represent a powerful tool to assess the performance of a combustor and identify possible issues/instabilities, helping thus e.g. to investigate the impact of advanced cycle modifications on the combustion in mGTs. The steady Reynolds-averaged Navier-Stokes (RANS) approach is still mostly used in this framework. With growing computational power, Large Eddy Simulation (LES) has gained more interest. LES provides higher details concerning flow structures and can better predict possible instabilities, specifically needed for advanced cycle modelling. On the other hand, LES remain rather challenging for real industrial applications. This work aims at providing an answer whether the advantages of LES justify the much higher computational costs. The objective of the present study is thus to assess the combustion performance and emissions of a typical small-scale 3.2 kWe micro gas turbine (mGT), using steady RANS and LES for various fuels. In this framework, a comparison of RANS and LES approaches (two levels of fidelity) is performed on a typical industrial case, to point out the strengths and weakness of each method with regard to industrial and research needs. The results show that both RANS (at a reduced cost) and LES can accurately predict the time-averaged trends of the main performance parameters, like temperature levels and emissions, also using various non-conventional inlet conditions. For the accurate prediction of the instabilities, the LES approach stands out as this approach takes into account the time-variation of the different quantities. Finally, a significant discrepancy has been observed between the CO levels provided by RANS and LES approaches where LES is overestimating the level of CO in the exhaust gases. Whereas it is difficult for LES to compete with convincing results provided by RANS, especially in the prediction of global emissions at reduced simulation cost, the LES strengths come out especially in flame and combustion stability analysis.

Author(s):  
David Sánchez ◽  
Miguel Rollán ◽  
Lourdes García-Rodríguez ◽  
G. S. Martínez

Abstract This paper presents the preliminary design and techno-economic assessment of an innovative solar system for the simultaneous production of water and electricity at small scale, based on the combination of a solar micro gas turbine and a bottoming desalination unit. The proposed layout is such that the former system converts solar energy into electricity and rejects heat that can be used to drive a thermal desalination plant. A design model is developed in order to select the main design parameters for two different desalination technologies, phase change and membrane desalination, in order to better exploit the available electricity and waste heat from the turbine. In addition to the usual design parameters of the mGT, the impact of the size of the collector is also assessed and, for the desalination technologies, a tailored multi-effect distillation unit is analysed through the selection of the corresponding design parameters. A reverse osmosis desalination system is also designed in parallel, based on commercial software currently used by the water industry. The results show that the electricity produced by the solar micro gas turbine can be used to drive a Reverse Osmosis system effectively whereas the exhaust gases could drive a distillation unit. This would decrease the stack temperature of the plant, increasing the overall energy efficiency of the system. Nevertheless, the better thermodynamic performance of this fully integrated system does not translate into a more economical production of water. Indeed, the cost of water turns out lower when coupling the solar microturbine and Reverse Osmosis units only (between 3 and 3.5 €/m3), whilst making further use the available waste heat in a Multi Effect Distillation system rises the cost of water by 15%.


Author(s):  
Fabrizio Reale ◽  
Raniero Sannino ◽  
Raffaela Calabria ◽  
Patrizio Massoli

Abstract The paper is focused on coupling a small-scale power plant, based on a micro gas turbine (mGT) and a bottoming Organic Rankine Cycle (ORC), with a biomass gasifier. The aim of this study is to define the optimal strategies to maximize the benefits related to distributed generation and to promote the organic solid waste gasification, in terms of energy efficiency and renewable sources exploitation. In particular, they were investigated the energetic performances of the system when the micro gas turbine was fed with several fuel blends, made by specific volume concentration of syngas and biogas. The low heating value of both considered fuels implies the necessity of operating the mGT in peculiar conditions as determined by the performance maps of compressor and turbine. Then, the thermodynamic analyses of the whole energy system have been carried out to evaluate the performance for each fuel. The high hydrogen content of syngas and the different thermodynamic properties of the studied fuel blends required a deeper investigation of the combustion process. In order to analyze the combustion stability and the fluid dynamic aspects, an accurate investigation of combustion chamber has been performed through a CFD solver. Finally, a comparison of the plant performances for each fuel blend have been reported, along with opportunities and critical aspects related to power plant integration.


2008 ◽  
Vol 130 (2) ◽  
Author(s):  
Filippo Rubechini ◽  
Michele Marconcini ◽  
Andrea Arnone ◽  
Massimiliano Maritano ◽  
Stefano Cecchi

In this work a numerical investigation of a four stage heavy-duty gas turbine is presented. Fully three-dimensional, multistage, Navier-Stokes analyses are carried out to predict the overall turbine performance. Coolant injections, cavity purge flows, and leakage flows are included in the turbine modeling by means of suitable wall boundary conditions. The main objective is the evaluation of the impact of gas modeling on the prediction of the stage and turbine performance parameters. To this end, four different gas models were used: three models are based on the perfect gas assumption with different values of constant cp, and the fourth is a real gas model which accounts for thermodynamic gas properties variations with temperature and mean fuel∕air ratio distribution in the through-flow direction. For the real gas computations, a numerical model is used which is based on the use of gas property tables, and exploits a local fitting of gas data to compute thermodynamic properties. Experimental measurements are available for comparison purposes in terms of static pressure values at the inlet∕outlet of each row and total temperature at the turbine exit.


Author(s):  
Hannah Seliger-Ost ◽  
Peter Kutne ◽  
Jan Zanger ◽  
Manfred Aigner

Abstract The use of biogas has currently two disadvantages. Firstly, processing biogas to natural gas quality for feeding into the natural gas grid is a rather energy consuming process. Secondly, the conversion into electricity directly in biogas plants produces waste heat, which largely cannot be used. Therefore, a feed-in of the desulfurized and dry biogas to local biogas grids would be preferable. Thus, the biogas could be used directly at the end consumer for heat and power production. As biogas varies in its methane (CH4) and carbon dioxide (CO2) content, respectively, this paper studies the influence of different biogas mixtures compared to natural gas on the combustion in a FLOX®-based six nozzle combustor. The single staged combustor is suitable for the use in a micro gas turbine (MGT) based combined heat and power (CHP) system with an electrical power output of 3 kW. The combustor is studied in an optically accessible atmospheric test rig, as well as integrated into the MGT system. This paper focuses on the influence of the admixture of CO2 to natural gas on the NOX and CO emissions. Furthermore, at atmospheric conditions the shape and location of the heat release zone is investigated using OH* chemiluminescence (OH* CL). The combustor could be stably operated in the MGT within the complete stationary operating range with all fuel mixtures.


2019 ◽  
Vol 141 (8) ◽  
Author(s):  
Joshua A. Keep ◽  
Ingo H. J. Jahn

Radial inflow turbines are a relevant architecture for energy extraction from supercritical CO2 power cycles for scales less than 10 MW. To ensure stage and overall cycle efficiency, it is desirable to recover exhaust energy from the turbine stage through the inclusion of a suitable diffuser in the turbine exhaust stream. In supercritical CO2 Brayton cycles, the high turbine inlet pressure can lead to sealing challenges at small scale if the rotor is supported from the rotor rear side in the conventional manner. An alternative is a layout where the rotor exit faces the bearing system. While such a layout is attractive for the sealing system, it limits the axial space claim of the diffuser. Designs of a combined annular-radial diffuser are considered as a means to meet the aforementioned packaging challenges of this rotor layout. Diffuser performance is assessed numerically with the use of Reynolds-averaged Navier--Stokes (RANS) and unsteady Reynolds-averaged Navier--Stokes (URANS) calculations. To appropriately account for cross coupling with the stage, a single blade passage of the entire stage is modeled. Assessment of diffuser inlet conditions, and off-design performance analysis, reveals that the investigated diffuser designs are performance robust to high swirl, high inlet blockage, and highly nonuniform mass flux distribution. Diffuser component performance is dominated by the annular-radial bend. The incorporation of a constant sectional area bend is the key geometric feature in rendering the highly nonuniform turbine exit flow (dominated by tip clearance flows at the shroud) more uniform.


Author(s):  
Homam Nikpey ◽  
Mohsen Assadi ◽  
Peter Breuhaus

Previously published studies have addressed modifications to the engines when operating with biogas, i.e. a low heating value (LHV) fuel. This study focuses on mapping out the possible biogas share in a fuel mixture of biogas and natural gas in micro combined heat and power (CHP) installations without any engine modifications. This contributes to a reduction in CO2 emissions from existing CHP installations and makes it possible to avoid a costly upgrade of biogas to the natural gas quality as well as engine modifications. Moreover, this approach allows the use of natural gas as a “fallback” solution in the case of eventual variations of the biogas composition and or shortage of biogas, providing improved availability. In this study, the performance of a commercial 100kW micro gas turbine (MGT) is experimentally evaluated when fed by varying mixtures of natural gas and biogas. The MGT is equipped with additional instrumentation, and a gas mixing station is used to supply the demanded fuel mixtures from zero biogas to maximum possible level by diluting natural gas with CO2. A typical biogas composition with 0.6 CH4 and 0.4 CO2 (in mole fraction) was used as reference, and corresponding biogas content in the supplied mixtures was computed. The performance changes due to increased biogas share were studied and compared with the purely natural gas fired engine. This paper presents the test rig setup used for the experimental activities and reports results, demonstrating the impact of burning a mixture of biogas and natural gas on the performance of the MGT. Comparing with when only natural gas was fired in the engine, the electrical efficiency was almost unchanged and no significant changes in operating parameters were observed. It was also shown that burning a mixture of natural gas and biogas contributes to a significant reduction in CO2 emissions from the plant.


Author(s):  
Moksadur Rahman ◽  
Anders Malmquist

Small-scale distributed generation systems are expected to play a vital role in future energy supplies. Subsequently, power generation using micro-gas turbine (MGT) is getting more and more attention. In particular, externally fired micro-gas turbine (EFMGT) is preferred among small-scale distributed generators, mainly due to high fuel flexibility, high overall efficiency, environmental benefits, and low maintenance requirement. The goal of this work is to evaluate the performance of an EFMGT-based standalone polygeneration system with the help of computational simulation studies. The main focus of this work is to develop a dynamic model for an EFMGT. The dynamic model is accomplished by merging a thermodynamic model with a mechanical model of the rotor and a transfer function based control system model. The developed model is suitable for analyzing system performance particularly from thermodynamic and control point of view. Simple models for other components of the polygeneration systems, electrical and thermal loads, membrane distillation unit, and electrical and thermal storage, are also developed and integrated with the EFMGT model. The modeling of the entire polygeneration system is implemented and simulated in matlab/simulink environment. Available operating data from test runs of both the laboratory setups are used in this work for further analysis and validation of the developed model.


Author(s):  
Marco Badami ◽  
Mauro Ferrero ◽  
Armando Portoraro

The paper deals with a simulation model, developed in Matlab Simulink®, of a small-scale Combined Heat and Power (CHP) plant based on a recuperated micro gas turbine (mGT). A minimum data set, mainly obtainable from datasheets, was defined, that allows the model to simulate different mGT plants in the small-scale range with a good accuracy. The model implements the mass, energy and momentum equations of the main components of the power plant. A double control system has also been developed, with the aim of maintaining the rotational speed of the turbine /compressor assembly at the nominal fixed value, and at limiting the Exhaust Gas Temperature (EGT) below the limit value. The model has been validated by means of experimental data obtained from a commercial mGT (100 kWel, 170 kWth), installed at the Politecnico di Torino, whose energetic characterization has been performed both at rated and at partial load conditions. The layout and the characteristics of the measurement system are also described in the paper.


Author(s):  
Carlos J. Mendez ◽  
Ramkumar N. Parthasarathy ◽  
Subramanyam R. Gollahalli

Alcohols serve as an alternate energy resource to the conventional petroleum-based fuels. The objective of this study was to document the performance and emission characteristics of blends of n-propanol and Jet A fuel in a small-scale gas turbine engine. The experiments were conducted in a 30kW gas turbine engine with a single-stage centrifugal flow compressor, annular combustion chamber and a single-stage axial flow turbine. In addition to neat propanol and Jet A fuel, three blends, with 25%, 50% and 75% of propanol by volume, were used as the fuels. The thrust, thrust-specific fuel consumption, and the concentrations of CO and NOx in the exhaust were measured and compared with those measured with Jet A fuel. The engine was operated at the same throttle settings with all the fuels. The operational range of engine rotational speed was shifted downwards with the addition of propanol due to its lower heating value. The thrust specific fuel consumption increased with the addition of propanol, while the CO emission index increased and NOx emission index decreased.


Author(s):  
Sergio Mario Camporeale ◽  
Patrizia Domenica Ciliberti ◽  
Bernardo Fortunato ◽  
Marco Torresi ◽  
Antonio Marco Pantaleo

Small scale Combined Heat and Power (CHP) plants present lower electric efficiency in comparison to large scale ones, and this is particularly true when biomass fuels are used. In most cases, the use of both heat and electricity to serve on site energy demand is a key issue to achieve acceptable global energy efficiency and investment profitability. However, the heat demand follows a typical daily and seasonal pattern and is influenced by climatic conditions, in particular in the case of residential and tertiary end users. During low heat demand periods, a lot of heat produced by the CHP plant is discharged. In order to increase the electric conversion efficiency of small scale micro turbine for heat and power cogeneration, a bottoming ORC system can be coupled to the cycle, however this option reduces the temperature and quantity of cogenerated heat available to the load. In this perspective, the paper presents the results of a thermo-economic analysis of small scale CHP plants composed by a micro gas turbine (MGT) and a bottoming Organic Rankine Cycle (ORC), serving a typical residential energy demand. For the topping cycle three different configurations are examined: 1) a simple recuperative micro gas turbine fuelled by natural gas (NG), 2) a dual fuel EFGT cycle, fuelled by biomass and natural gas (50% energy input) (DF) and 3) an externally fired gas turbine (EFGT) with direct combustion of biomass (B). The bottoming cycle is a simple saturated Rankine cycle with regeneration and no superheating. The ORC cycle and the fluid selection are optimized on the basis of the available exhaust gas temperature at the turbine exit. The research assesses the influence of the thermal energy demand typology (residential demand with cold, mild and hot climate conditions) and CHP plant operational strategies (baseload vs heat driven vs electricity driven operation mode) on the global energy efficiency and profitability of the following three configurations: A) MGT with cogeneration; B) MGT+ ORC without cogeneration; C) MGT+ORC with cogeneration. In all cases, a back-up boiler is assumed to match the heat demand of the load (fed by natural gas or biomass). The research explores the profitability of bottoming ORC in view of the following tradeoffs: (i) lower energy conversion efficiency and higher investment cost of high biomass input rate with respect to natural gas; (ii) higher efficiency but higher costs and reduced heat available for cogeneration in the bottoming ORC; (ii) higher primary energy savings and revenues from feed-in tariff available for biomass electricity fed into the grid.


Sign in / Sign up

Export Citation Format

Share Document