Quantum Dot Temperature Sensor Ab Initio Test: Droplet Vaporization Heat Transfer

Author(s):  
Husain Al Hashimi ◽  
Jungho Kim

Better understanding of phase change phenomena can be obtained through local measurements of the heat transfer process, which can’t be attained by traditional thermocouple point measurements. Infrared (IR) technology, which has been used by many researchers in the past, cannot be used under certain circumstances due to spectral transparency issues present in some materials. In the current study, Quantum Dots (QDs) are proposed as a novel tool for heat transfer measurements. QDs are nano-sized semiconductor materials which fluoresce upon excitation by blue or UV light. The light intensity emitted by QDs drops with temperature, which can be utilized to obtain the surface temperature distribution at a camera pixel resolution. If QDs are distributed on a surface of interest and optical access to that surface is available, the heat transfer processes can be examined using inexpensive equipment such as CCD/CMOS cameras and LED excitation sources. In this paper, a description of a QD based technique is given, where it is applied to visualize the heat transfer associated with ethanol droplet evaporation.

2005 ◽  
Vol 494 ◽  
pp. 381-386 ◽  
Author(s):  
Z.S. Nikolić ◽  
M. Yoshimura ◽  
S. Araki

Two-dimensional numerical model is adopted to analyze the heat transfer process during solidification of the sample melted in an Arc-image furnace. Numerical solution of this complex problem enabled us to calculate the temperature distribution in both sample and substrate, including the phase change phenomena. Also, the effects of process parameters on the solidification of the sample melted on substrate that is cooled by water can be investigated numerically. The parameters include sample size, contact area size between the sample and the substrate, and degree of undercooling associated with rapid phase change and moving interface. The results obtained reveal that these parameters have strong effect on temperature distribution during solidification.


2020 ◽  
Vol 786 (11) ◽  
pp. 30-34
Author(s):  
A.M. IBRAGIMOV ◽  
◽  
L.Yu. GNEDINA ◽  

This work is part of a series of articles under the general title The structural design of the blast furnace wall from efficient materials [1–3]. In part 1, Problem statement and calculation prerequisites, typical multilayer enclosing structures of a blast furnace are considered. The layers that make up these structures are described. The main attention is paid to the lining layer. The process of iron smelting and temperature conditions in the characteristic layers of the internal environment of the furnace is briefly described. Based on the theory of A.V. Lykov, the initial equations describing the interrelated transfer of heat and mass in a solid are analyzed in relation to the task – an adequate description of the processes for the purpose of further rational design of the multilayer enclosing structure of the blast furnace. A priori the enclosing structure is considered from a mathematical point of view as the unlimited plate. In part 2, Solving boundary value problems of heat transfer, boundary value problems of heat transfer in individual layers of a structure with different boundary conditions are considered, their solutions, which are basic when developing a mathematical model of a non-stationary heat transfer process in a multi-layer enclosing structure, are given. Part 3 presents a mathematical model of the heat transfer process in the enclosing structure and an algorithm for its implementation. The proposed mathematical model makes it possible to solve a large number of problems. Part 4 presents a number of examples of calculating the heat transfer process in a multilayer blast furnace enclosing structure. The results obtained correlate with the results obtained by other authors, this makes it possible to conclude that the new mathematical model is suitable for solving the problem of rational design of the enclosing structure, as well as to simulate situations that occur at any time interval of operation of the blast furnace enclosure.


Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4459
Author(s):  
José R. González ◽  
Charbel Damião ◽  
Maira Moran ◽  
Cristina A. Pantaleão ◽  
Rubens A. Cruz ◽  
...  

According to experts and medical literature, healthy thyroids and thyroids containing benign nodules tend to be less inflamed and less active than those with malignant nodules. It seems to be a consensus that malignant nodules have more blood veins and more blood circulation. This may be related to the maintenance of the nodule’s heat at a higher level compared with neighboring tissues. If the internal heat modifies the skin radiation, then it could be detected by infrared sensors. The goal of this work is the investigation of the factors that allow this detection, and the possible relation with any pattern referent to nodule malignancy. We aim to consider a wide range of factors, so a great number of numerical simulations of the heat transfer in the region under analysis, based on the Finite Element method, are performed to study the influence of each nodule and patient characteristics on the infrared sensor acquisition. To do so, the protocol for infrared thyroid examination used in our university’s hospital is simulated in the numerical study. This protocol presents two phases. In the first one, the body under observation is in steady state. In the second one, it is submitted to thermal stress (transient state). Both are simulated in order to verify if it is possible (by infrared sensors) to identify different behavior referent to malignant nodules. Moreover, when the simulation indicates possible important aspects, patients with and without similar characteristics are examined to confirm such influences. The results show that the tissues between skin and thyroid, as well as the nodule size, have an influence on superficial temperatures. Other thermal parameters of thyroid nodules show little influence on surface infrared emissions, for instance, those related to the vascularization of the nodule. All details of the physical parameters used in the simulations, characteristics of the real nodules and thermal examinations are publicly available, allowing these simulations to be compared with other types of heat transfer solutions and infrared examination protocols. Among the main contributions of this work, we highlight the simulation of the possible range of parameters, and definition of the simulation approach for mapping the used infrared protocol, promoting the investigation of a possible relation between the heat transfer process and the data obtained by infrared acquisitions.


2021 ◽  
pp. 146808742110170
Author(s):  
Eric Gingrich ◽  
Michael Tess ◽  
Vamshi Korivi ◽  
Jaal Ghandhi

High-output diesel engine heat transfer measurements are presented in this paper, which is the first of a two-part series of papers. Local piston heat transfer, based on fast-response piston surface temperature data, is compared to global engine heat transfer based on thermodynamic data. A single-cylinder research engine was operated at multiple conditions, including very high-output cases – 30 bar IMEPg and 250 bar in-cylinder pressure. A wireless telemetry system was used to acquire fast-response piston surface temperature data, from which heat flux was calculated. An interpolation and averaging procedure was developed and a method to recover the steady-state portion of the heat flux based on the in-cylinder thermodynamic state was applied. The local measurements were spatially integrated to find total heat transfer, which was found to agree well with the global thermodynamic measurements. A delayed onset of the rise of spatially averaged heat flux was observed for later start of injection timings. The dataset is internally consistent, for example, the local measurements match the global values, which makes it well suited for heat transfer correlation development; this development is pursued in the second part of this paper.


2003 ◽  
Author(s):  
B. X. Wang ◽  
H. Li ◽  
X. F. Peng ◽  
L. X. Yang

The development of a numerical model for analyzing the effect of the nano-particles’ Brownian motion on the heat transfer is described. By using the Maxwell velocity distribution relations to calculate the most possible velocity of fluid molecules at certain temperature gradient location around the nano-particle, the interaction between fluid molecules and one single nano-particle is analyzed and calculated. Based on this, a syntonic system is proposed and the coupled effect that Brownian motion of nano-particles has on fluid molecules is simulated. This is used to formulate a reasonable analytic method, facilitating laboratory study. The results provide the essential features of the heat transfer process, contributed by micro-convection to be considered.


2011 ◽  
Vol 393-395 ◽  
pp. 412-415
Author(s):  
Jian Hua Zhong ◽  
Li Ming Jiang ◽  
Kai Feng

In this article, finned copper tube used in the central air conditioning was acted as the discussed object. According to the combination with actual processing and theoretical calculations, Five finned tube was selected with typical structural parameters, and established their entity model using Pro/E, then the heat transfer process of finned tube was simulated through the ANSYS, the effect of the fin height, fin thickness and other structure parameters to the heat transfer enhancement of finned tube was researched. Meantime the efficiency of the heat transfer under different convection heat transfer coefficient was also studied.


Author(s):  
Matthew P. Rudy ◽  
Thomas M. Rudy ◽  
Himanshu M. Joshi ◽  
Amar S. Wanni

Within the past 30 years, many Enhanced Heat Transfer (EHT) technologies have become available in a number of forms for application in heat exchangers. These technologies are used in various industries to widely different extents. In 1999, H. Joshi, T. Rudy, and A. Wanni, former Ph.D. students of Dr. Ralph L. Webb and specialists in the application of EHTs in the Petroleum Industry prepared a paper for the Journal of Enhanced Heat Transfer that reviewed the extent of use of EHT Technologies in the Petroleum Industry [1]. The current paper reviews how the application of EHT in the Petroleum Industry has changed in the last 14 years.


2011 ◽  
Vol 228-229 ◽  
pp. 676-680 ◽  
Author(s):  
Ye Tian ◽  
Xun Liang Liu ◽  
Zhi Wen

A three-dimensional mathematic model is developed for a 100kw single-end recuperative radiant tube and the simulation is performed with the CFD software FLUENT. Also it is used to investigate the effect of distance between combustion chamber exit and inner tube on heat transfer process. The results suggest that the peak value of combustion flame temperature drops along with the increasing of distance, which leads to low NOX discharging. Also radiant tube surface bulk temperature decreases, which causes radiant tube heating performance losses.


2004 ◽  
Vol 126 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Rizos N. Krikkis ◽  
Stratis V. Sotirchos ◽  
Panagiotis Razelos

A numerical bifurcation analysis is carried out in order to determine the solution structure of longitudinal fins subject to multi-boiling heat transfer mode. The thermal analysis can no longer be performed independently of the working fluid since the heat transfer coefficient is temperature dependent and includes the nucleate, the transition and the film boiling regimes where the boiling curve is obtained experimentally for a specific fluid. The heat transfer process is modeled using one-dimensional heat conduction with or without heat transfer from the fin tip. Furthermore, five fin profiles are considered: the constant thickness, the trapezoidal, the triangular, the convex parabolic and the parabolic. The multiplicity structure is obtained in order to determine the different types of bifurcation diagrams, which describe the dependence of a state variable of the system (for instance the fin temperature or the heat dissipation) on a design (Conduction-Convection Parameter) or operation parameter (base Temperature Difference). Specifically the effects of the base Temperature Difference, of the Conduction-Convection Parameter and of the Biot number are analyzed and presented in several diagrams since it is important to know the behavioral features of the heat rejection mechanism such as the number of the possible steady states and the influence of a change in one or more operating variables to these states.


Sign in / Sign up

Export Citation Format

Share Document