Measurement of Plutonium Contamination Through Paint Using a Fidler Probe

Author(s):  
Robert Clark ◽  
Pete Burgess ◽  
Ian Croudace

Alpha contamination detection usually relies on good surface conditions — unobstructed, smooth, clean and flat. However, in many circumstances, the conditions may be difficult, or it may be that there is a significant chance that contamination has been deliberately or accidentally painted over. Hence an alternative method of monitoring would be useful. In some areas of fuel manufacture and reprocessing, and in weapons manufacture, potential contamination is dominated by plutonium isotopes and by ingrown Am-241, derived from the beta decay of Pu-241. Plutonium is often thought of as a mainly an alpha emitter, together with a few weak betas detectable by direct means only with extreme difficulty. However, the alpha emitting isotopes of plutonium also emit significant L x-rays in the 11 to 20 keV energy range, as does Am-241, which also emits a 60 keV gamma with a 36% probability. These X-rays are unattenuated to any extent in air over a range of 1 metre. They also penetrate paint significantly, which makes them detectable by a suitable probe. The Fidler probe was designed as an efficient detector of these X and gamma radiations. The window is thin beryllium and the scintillator is thin sodium iodide. This leads to a very efficient detection of both the X-rays in question and the 60 keV gamma radiation while keeping the background as low as possible. The signal from such a detector can be processed in several ways — gross counting above a threshold, counting in regions of interest or full spectrometry. The advantages of the latter include the minimisation of background, easy background correction, the ability to use the recorded X-ray spectrum to correct the measured counts and the identification of the presence of other gamma emitters. Nuvia Ltd have been developing techniques to look at the spectrum from Fidler probes and derive a calibration factor, either from using the 60 keV gamma measurement only where the fingerprint is well known and stable, or by using samples of paint and small area sources to actually measure the transmission factor where the Am-241 fraction is variable. Using these techniques, it is possible to obtain a good estimate of the plutonium contamination level under paint over a range of conditions.

2020 ◽  
Vol 225 ◽  
pp. 05003
Author(s):  
T. Marchais ◽  
B. Pérot ◽  
C. Carasco ◽  
J-L. Ma ◽  
P-G. Allinei ◽  
...  

Gamma logging for uranium exploration are currently based on total counting with Geiger Müller gas detectors or NaI (TI) scintillators. However, the total count rate interpretation in terms of uranium concentration may be impaired in case of roll fronts, when the radioactive equilibrium of the natural 238U radioactive chain is modified by differential leaching of uranium and its daughter radioisotopes of thorium, radium, radon, etc. Indeed, in case of secular equilibrium, more than 95 % of gamma rays emitted by uranium ores come from 214Pb and 214Bi isotopes, which are in the back-end of 238U chain. Consequently, these last might produce an intense gamma signal even when uranium is not present, or with a much smaller activity, in the ore. Therefore, gamma spectroscopy measurements of core samples are performed in surface with high-resolution hyper-pure germanium HPGe detectors to directly characterize uranium activity from the 1001 keV gamma ray of 234mPa, which is in the beginning of 238U chain. However, due to the low intensity of this gamma ray, i.e. 0.84 %, acquisitions of several hours are needed. In view to characterize uranium concentration within a few minutes, we propose here a method using both the 92 keV gamma ray of 234Th and the 98.4 keV uranium X-ray. This last is due to uranium self-induced fluorescence caused by gamma radiations of 214Pb and 214Bi, which create a significant Compton scattering continuum acting as a fluorescence source and resulting in the emission of uranium fluorescence X-rays. The comparison of the uranium activity obtained with the 92 keV and 98.4 keV lines allows detecting a uranium heterogeneity in the ore. Indeed, in case of uranium nugget, the 92 keV line leads to underestimated uranium concentration due to gamma self-absorption, but on the contrary the 98.4 keV line leads to an overestimation because of increased fluorescence. In order to test this new approach, several tens of uranium ore samples have been measured with a handheld HPGe FALCON 5000 detector.


1994 ◽  
Vol 144 ◽  
pp. 82
Author(s):  
E. Hildner

AbstractOver the last twenty years, orbiting coronagraphs have vastly increased the amount of observational material for the whitelight corona. Spanning almost two solar cycles, and augmented by ground-based K-coronameter, emission-line, and eclipse observations, these data allow us to assess,inter alia: the typical and atypical behavior of the corona; how the corona evolves on time scales from minutes to a decade; and (in some respects) the relation between photospheric, coronal, and interplanetary features. This talk will review recent results on these three topics. A remark or two will attempt to relate the whitelight corona between 1.5 and 6 R⊙to the corona seen at lower altitudes in soft X-rays (e.g., with Yohkoh). The whitelight emission depends only on integrated electron density independent of temperature, whereas the soft X-ray emission depends upon the integral of electron density squared times a temperature function. The properties of coronal mass ejections (CMEs) will be reviewed briefly and their relationships to other solar and interplanetary phenomena will be noted.


Author(s):  
R. H. Duff

A material irradiated with electrons emits x-rays having energies characteristic of the elements present. Chemical combination between elements results in a small shift of the peak energies of these characteristic x-rays because chemical bonds between different elements have different energies. The energy differences of the characteristic x-rays resulting from valence electron transitions can be used to identify the chemical species present and to obtain information about the chemical bond itself. Although these peak-energy shifts have been well known for a number of years, their use for chemical-species identification in small volumes of material was not realized until the development of the electron microprobe.


Author(s):  
E. A. Kenik ◽  
J. Bentley

Cliff and Lorimer (1) have proposed a simple approach to thin foil x-ray analy sis based on the ratio of x-ray peak intensities. However, there are several experimental pitfalls which must be recognized in obtaining the desired x-ray intensities. Undesirable x-ray induced fluorescence of the specimen can result from various mechanisms and leads to x-ray intensities not characteristic of electron excitation and further results in incorrect intensity ratios.In measuring the x-ray intensity ratio for NiAl as a function of foil thickness, Zaluzec and Fraser (2) found the ratio was not constant for thicknesses where absorption could be neglected. They demonstrated that this effect originated from x-ray induced fluorescence by blocking the beam with lead foil. The primary x-rays arise in the illumination system and result in varying intensity ratios and a finite x-ray spectrum even when the specimen is not intercepting the electron beam, an ‘in-hole’ spectrum. We have developed a second technique for detecting x-ray induced fluorescence based on the magnitude of the ‘in-hole’ spectrum with different filament emission currents and condenser apertures.


Author(s):  
W. Brünger

Reconstructive tomography is a new technique in diagnostic radiology for imaging cross-sectional planes of the human body /1/. A collimated beam of X-rays is scanned through a thin slice of the body and the transmitted intensity is recorded by a detector giving a linear shadow graph or projection (see fig. 1). Many of these projections at different angles are used to reconstruct the body-layer, usually with the aid of a computer. The picture element size of present tomographic scanners is approximately 1.1 mm2.Micro tomography can be realized using the very fine X-ray source generated by the focused electron beam of a scanning electron microscope (see fig. 2). The translation of the X-ray source is done by a line scan of the electron beam on a polished target surface /2/. Projections at different angles are produced by rotating the object.During the registration of a single scan the electron beam is deflected in one direction only, while both deflections are operating in the display tube.


Author(s):  
L. T. Germinario

Understanding the role of metal cluster composition in determining catalytic selectivity and activity is of major interest in heterogeneous catalysis. The electron microscope is well established as a powerful tool for ultrastructural and compositional characterization of support and catalyst. Because the spatial resolution of x-ray microanalysis is defined by the smallest beam diameter into which the required number of electrons can be focused, the dedicated STEM with FEG is the instrument of choice. The main sources of errors in energy dispersive x-ray analysis (EDS) are: (1) beam-induced changes in specimen composition, (2) specimen drift, (3) instrumental factors which produce background radiation, and (4) basic statistical limitations which result in the detection of a finite number of x-ray photons. Digital beam techniques have been described for supported single-element metal clusters with spatial resolutions of about 10 nm. However, the detection of spurious characteristic x-rays away from catalyst particles produced images requiring several image processing steps.


Author(s):  
W. Z. Chang ◽  
D. B. Wittry

Since Du Mond and Kirkpatrick first discussed the principle of a bent crystal spectrograph in 1930, curved single crystals have been widely utilized as spectrometric monochromators as well as diffractors for focusing x rays diverging from a point. Curved crystal diffraction theory predicts that the diffraction parameters - the rocking curve width w, and the peak reflection coefficient r of curved crystals will certainly deviate from those of their flat form. Due to a lack of curved crystal parameter data in current literature and the need for optimizing the choice of diffraction geometry and crystal materials for various applications, we have continued the investigation of our technique presented at the last conference. In the present abstract, we describe a more rigorous and quantitative procedure for measuring the parameters of curved crystals.The diffraction image of a singly bent crystal under study can be obtained by using the Johann geometry with an x-ray point source.


Author(s):  
Shawn Williams ◽  
Xiaodong Zhang ◽  
Susan Lamm ◽  
Jack Van’t Hof

The Scanning Transmission X-ray Microscope (STXM) is well suited for investigating metaphase chromosome structure. The absorption cross-section of soft x-rays having energies between the carbon and oxygen K edges (284 - 531 eV) is 6 - 9.5 times greater for organic specimens than for water, which permits one to examine unstained, wet biological specimens with resolution superior to that attainable using visible light. The attenuation length of the x-rays is suitable for imaging micron thick specimens without sectioning. This large difference in cross-section yields good specimen contrast, so that fewer soft x-rays than electrons are required to image wet biological specimens at a given resolution. But most imaging techniques delivering better resolution than visible light produce radiation damage. Soft x-rays are known to be very effective in damaging biological specimens. The STXM is constructed to minimize specimen dose, but it is important to measure the actual damage induced as a function of dose in order to determine the dose range within which radiation damage does not compromise image quality.


Author(s):  
J. R. Michael

X-ray microanalysis in the analytical electron microscope (AEM) refers to a technique by which chemical composition can be determined on spatial scales of less than 10 nm. There are many factors that influence the quality of x-ray microanalysis. The minimum probe size with sufficient current for microanalysis that can be generated determines the ultimate spatial resolution of each individual microanalysis. However, it is also necessary to collect efficiently the x-rays generated. Modern high brightness field emission gun equipped AEMs can now generate probes that are less than 1 nm in diameter with high probe currents. Improving the x-ray collection solid angle of the solid state energy dispersive spectrometer (EDS) results in more efficient collection of x-ray generated by the interaction of the electron probe with the specimen, thus reducing the minimum detectability limit. The combination of decreased interaction volume due to smaller electron probe size and the increased collection efficiency due to larger solid angle of x-ray collection should enhance our ability to study interfacial segregation.


Author(s):  
D. A. Carpenter ◽  
M. A. Taylor

The development of intense sources of x rays has led to renewed interest in the use of microbeams of x rays in x-ray fluorescence analysis. Sparks pointed out that the use of x rays as a probe offered the advantages of high sensitivity, low detection limits, low beam damage, and large penetration depths with minimal specimen preparation or perturbation. In addition, the option of air operation provided special advantages for examination of hydrated systems or for nondestructive microanalysis of large specimens.The disadvantages of synchrotron sources prompted the development of laboratory-based instrumentation with various schemes to maximize the beam flux while maintaining small point-to-point resolution. Nichols and Ryon developed a microprobe using a rotating anode source and a modified microdiffractometer. Cross and Wherry showed that by close-coupling the x-ray source, specimen, and detector, good intensities could be obtained for beam sizes between 30 and 100μm. More importantly, both groups combined specimen scanning with modern imaging techniques for rapid element mapping.


Sign in / Sign up

Export Citation Format

Share Document