Abrasive Wear Behaviour of Al-Si-Graphite Composite Under Heat-Treated Condition

Author(s):  
C. S. Ramesh ◽  
T. B. Prasad

Composites were prepared from commercially available scrap piston by dispersing copper coated graphite particulates by stir casting, followed by heat treatment of the composite. Abrasive wear tests were conducted on the composites and the matrix alloy both before and after heat treatment. The test duration was 30min while coarse silicon carbide abrasive wheels were used. Wear was measured as weight loss of the specimen using digital weighing machine of accuracy 0.001gms. The worn surfaces were subjected to SEM analysis. Addition of graphite particulates followed by heat treatment has resulted in uniform distribution of graphite in the matrix alloy and improved abrasive wear resistance of the cast Al-Si-graphite composites.

2019 ◽  
Vol 10 (2) ◽  
pp. 149-161 ◽  
Author(s):  
Praveen Kumar Bannaravuri ◽  
Anil Kumar Birru

Purpose The purpose of this paper is to determine the use of BLA along with SiC as economical reinforcements to enhance the mechanical behavior of hybrid composite. The purpose of this research is the development of cost-effective aluminum hybrid metal matrix composites. Design/methodology/approach The present research work investigation evaluated the mechanical properties of Al-4.5%Cu alloy, Al-4.5Cu/10SiC, Al-4.5Cu/10SiC/2BLA and Al-4.5Cu/10SiC/4BLA composites by the Stir casting method. The fabricated composites were analyzed using optical microscopy (OM), scanning electron microscopy (SEM), and hardness and tensile test. Findings The microstructure modification with the addition of reinforcement particles in the matrix alloy and clear interface in between matrix and particles are observed. The density of the composite increased with the addition of SiC and decreased with the addition of BLA in comparison with that of matrix alloy. The hardness and tensile strength of the single-reinforced composite and hybrid composites improved with the addition of reinforcement particles. The strengthening of composites was due to load-bearing capacity of reinforcement particles over the matrix alloy and increased dislocation density of composites materials. The tensile failure mechanism of the composites is reveled with SEM analysis. Practical implications The papers reports the development of cost-effective and light weight aluminum hybrid composites with remarkable enhancement in the mechanical and tribological properties with the addition of BLA as economical reinforcement along with SiC. Originality/value The density, hardness and tensile values of fabricated aluminium composites were presented in this paper for the use in the engineering applications where the weight and cost are consider as a primary factors.


2013 ◽  
Vol 553 ◽  
pp. 29-33 ◽  
Author(s):  
H. Moosavian ◽  
Masoud Emamy ◽  
M. Mansouri Arani ◽  
S. Mahboubi

A composite containing A356 Al alloy as matrix and ZrB2 particles was made in an induction furnace by mixing Al-15Zr and Al-8B master alloys with Zr:B weight ratio of 9:2. The microstructures and tensile properties of the extruded composite were studied by scanning electron microscopy (SEM) and x-ray diffraction (XRD) analysis before and after T6 heat treatment. XRD results showed the presence of ZrB2 phase in the microstructure. Tensile test results showed an increase in ultimate tensile strength (UTS) and elongation values of the extruded composite in comparison with the matrix alloy. Further investigation showed an increase in UTS, but reduction in elongation values of the composite after T6 heat treatment.


MRS Advances ◽  
2020 ◽  
Vol 5 (59-60) ◽  
pp. 3077-3089
Author(s):  
Alexeis Sánchez ◽  
Arnoldo Bedolla-Jacuinde ◽  
Francisco V. Guerra ◽  
I. Mejía

AbstractFrom the present study, vanadium additions up to 6.4% were added to a 14%Cr-3%C white iron, and the effect on the microstructure, hardness and abrasive wear were analysed. The experimental irons were melted in an open induction furnace and cast into sand moulds to obtain bars of 18, 25, and 37 mm thickness. The alloys were characterized by optical and electronic microscopy, and X-ray diffraction. Bulk hardness was measured in the as-cast conditions and after a destabilization heat treatment at 900°C for 45 min. Abrasive wear resistance tests were undertaken for the different irons according to the ASTM G65 standard in both as-cast and heat-treated conditions under a load of 60 N for 1500 m. The results show that, vanadium additions caused a decrease in the carbon content in the alloy and that some carbon is also consumed by forming primary vanadium carbides; thus, decreasing the eutectic M7C3 carbide volume fraction (CVF) from 30% for the base iron to 20% for the iron with 6.4%V;but overall CVF content (M7C3 + VC) is constant at 30%. Wear behaviour was better for the heat-treated alloys and mainly for the 6.4%V iron. Such a behaviour is discussed in terms of the CVF, the amount of vanadium carbides, the amount of martensite/austenite in matrix and the amount of secondary carbides precipitated during the destabilization heat treatment.


Author(s):  
Raj Kumar Singh ◽  
Amit Telang ◽  
Satyabrata Das

Abstract The effects of friction heat and friction coefficient on the abrasive wear response of Al-7.5Si–SiCp composite against low-cost hypereutectic (Al-17.5Si) alloy were investigated as functions of the abrasive size and applied load in both as-cast and after heat-treatment conditions. Experiments were performed on pin-on-disc apparatus at 38 –80 μm abrasive size, 5 – 20 N applied load, 100 –400 m abrading (sliding) distances and 1 m s–1 constant sliding speed. The frictional heating of as-cast and heat-treated composite was superior compared to the matrix alloy and hypereutectic alloy, whereas the trend reversed for the friction coefficient. The frictional heating and friction coefficient of the materials increased with the abrasive size and applied load in both as-cast and after heat-treatment. The worn surface and wear debris particles were examined by using field emission scanning electron microscopy to understand the wear mechanism.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Sakthi Sadhasivam RM ◽  
Ramanathan K. ◽  
Bhuvaneswari B.V. ◽  
Raja R.

Purpose The most promising replacements for the industrial applications are particle reinforced metal matrix composites because of their good and combined mechanical properties. Currently, the need of matrix materials for industrial applications is widely satisfied by aluminium alloys. The purpose of this paper is to evaluate the tribological behaviour of the zinc oxide (ZnO) particles reinforced AA6061 composites prepared by stir casting route. Design/methodology/approach In this study, AA6061 aluminium alloy matrix reinforced with varying weight percentages (3%, 4.5% and 6%) of ZnO particles, including monolithic AA6061 alloy samples, is cast by the most economical fabrication method, called stir casting. The prepared sample was subjected to X-ray photoelectron spectroscopy (XPS) analysis, experimental density measurement by Archimedian principle and theoretical density by rule of mixture and hardness test to investigate mechanical property. The dry sliding wear behaviour of the composites was investigated using pin-on-disc tribometer with various applied loads of 15 and 20 N, with constant sliding velocity and distance. The wear rate, coefficient of friction (COF) and worn surfaces of the composite specimens and their effects were also investigated in this work. Findings XPS results confirm the homogeneous distribution of ZnO microparticles in the Al matrix. The Vickers hardness result reveals that higher ZnO reinforced (6%) sample have 34.4% higher values of HV than the monolithic aluminium sample. The sliding wear tests similarly show that increasing the weight percentage of ZnO particles leads to a reduced wear rate and COF of 30.01% and 26.32% lower than unreinforced alloy for 15 N and 36.35% and 25% for 20 N applied load. From the worn surface morphological studies, it was evidently noticed that ZnO particles dispersed throughout the matrix and it had strong bonding between the reinforcement and the matrix, which significantly reduced the plastic deformation of the surfaces. Originality/value The uniqueness of this work is to use the reinforcement of ZnO particles with AA6061 matrix and preparing by stir casting route and to study and analyse the physical, hardness and tribological behaviour of the composite materials.


2018 ◽  
Vol 877 ◽  
pp. 50-53 ◽  
Author(s):  
Vinayashree ◽  
R. Shobha

Aluminium composites are in predominant use due to their lower weight and high strength among the MMC’s. Aluminium 6061 is selected as matrix and E-glass fiber is selected as reinforcement. Fabrication of composite is done by stir casting method. Each fabrication carries the E-glass reinforcement content varied from 2% to 10%. The present article attempts to evaluate the mechanical properties of E-glass fibre reinforced composite and study the effect of reinforcement on the matrix alloy through mechanical properties. When compared to ascast mechanical properties the UTS has increased from 74.28 N/sq mm to 146.8 N/sq mm for a composite at 6% E-glass. The hardness of as-cast has also increased from 22 RHB to 43 RHB at 6% E-glass and the wear of composite has exhibited a decreasing tend with increase in reinforcement content along the sliding distance. The results are analyzed in certain depth in the current paper. The mechanical properties of composites have improved with the increase in the weigh percentage of glass fiber in the aluminium matrix.


Author(s):  
K H W Seah ◽  
S C Sharma ◽  
M Krishna

The mechanical properties and the fracture mechanism of composites consisting of ZA-27 alloy reinforced with titanium dioxide particles were investigated with the primary objective of understanding the influence of the particulate reinforcement on the mechanical behaviour of the ZA-27 alloy. The titanium dioxide particle content in the composites ranged from 0 to 6 per cent, in steps of 2 wt %. The composites were fabricated by the stir casting technique in which the reinforcement particles were dispersed in the vortex created in the molten matrix alloy. The study revealed improvements in Young's modulus, ultimate tensile strength (UTS), compressive strength, yield strength and hardness of the composites as the titanium dioxide content was increased, but at the expense of ductility and impact strength. The fracture behaviour of the composite was also significantly influenced by the presence of titanium dioxide particles. Eventual fracture was a result of crack propagation through the matrix as well as through the reinforcing particles. Scanning electron microscopy and fractography analyses were carried out to provide suitable explanations for the observed phenomena.


2017 ◽  
Vol 23 (1&2) ◽  
pp. 113 ◽  
Author(s):  
M.B. Harun ◽  
S.R. Shamsudin ◽  
H. Yazid ◽  
Z. Selamat ◽  
M.S. Sattar ◽  
...  

The microstructure of cast Al-4Si-Mg reinforcedwith fly ash particles at various particlecontents has been studied. The composites were fabricated by stir casting process andcharacterized by optical microscopy, image analyzer, scanning electron microscopy and hardness measurements. The results showed that particle contents affected to the presence oforosities and hardness of the composites. It was observed that increasing the fly ash contentincrease the porosity in the composites, with the matrix alloy reinforced with 15 wt.% of fly ash particles having the highest porosity and lowest hardness.


2020 ◽  
Vol 17 (1) ◽  
pp. 149-166
Author(s):  
Karthikeyan S ◽  
Karunanithi R ◽  
Ashoke Ghosh

PurposeAluminium is the most proficiently and commonly used metal due to its desirable physical, chemical and mechanical properties. When Aluminium reinforced with hard ceramic particles, shows increased strength and good corrosion resistant and wear resistant qualities. In the present investigation, A390 + X vol. % Zro2 (X = 5, 10 and 15) composites have been fabricated through P/M technique.Design/methodology/approachAfter that the microstructural properties are tested by scanning electron microscope (SEM) analysis wear test is performed using pin-on-disc machine.FindingsThe wear conditions of applied load 30N and sliding velocity 1 m/s and track distance 1000m was followed. A390 + 15% Zro2 of surface of the composites unveiled greater hardness when compared with A390 alloy.Originality/valueA390 + 15% Zro2 exhibited superior wear resistance than that of the matrix alloy. Thus the material proves as an excellent solution for applications that requires high wear resistance.


Sign in / Sign up

Export Citation Format

Share Document