Fundamental and Application of High Precision Laser Micro-Bending

Author(s):  
X. Richard Zhang ◽  
Xianfan Xu

Abstract This paper presents the technique of high precision microscale laser bending and the study of the thermomechanical phenomena involved. The use of pulsed and CW lasers for microscale bending of ceramics, silicon, and stainless steel is demonstrated. Experimental studies are conducted to find out the relation between bending angles and laser operation parameters. Bending results obtained by a pulsed and a CW laser are compared. Changes of surface composition after laser irradiation are analyzed. Numerical calculations based on thermo-elasto-plastic theory are conducted and results are compared with the experimental data Examples of industrial applications of high precision laser bending are given.


2003 ◽  
Vol 125 (3) ◽  
pp. 512-518 ◽  
Author(s):  
X. Richard Zhang ◽  
Xianfan Xu

This paper discusses high precision microscale laser bending and the thermomechanical phenomena involved. The use of a pulsed and a CW laser for microscale bending of ceramics, silicon, and stainless steel is demonstrated. For each laser, experiments are conducted to find out the relation between bending angles and laser operation parameters. Changes of the ceramics surface composition after laser irradiation are analyzed using an electron probe microanalyzer (EPMA). Results obtained by the pulsed and the CW laser are compared, and it is found that the CW laser produces more bending than the pulsed laser does. However, the pulsed laser causes much less surface composition change and thermomechanical damage to the targets. Numerical calculations based on the thermo-elasto-plastic theory are carried out and the results are used to explain the phenomena observed experimentally.



2018 ◽  
Vol 84 (10) ◽  
pp. 23-28
Author(s):  
D. A. Golentsov ◽  
A. G. Gulin ◽  
Vladimir A. Likhter ◽  
K. E. Ulybyshev

Destruction of bodies is accompanied by formation of both large and microscopic fragments. Numerous experiments on the rupture of different samples show that those fragments carry a positive electric charge. his phenomenon is of interest from the viewpoint of its potential application to contactless diagnostics of the early stage of destruction of the elements in various technical devices. However, the lack of understanding the nature of this phenomenon restricts the possibility of its practical applications. Experimental studies were carried out using an apparatus that allowed direct measurements of the total charge of the microparticles formed upon sample rupture and determination of their size and quantity. The results of rupture tests of duralumin and electrical steel showed that the size of microparticles is several tens of microns, the particle charge per particle is on the order of 10–14 C, and their amount can be estimated as the ratio of the cross-sectional area of the sample at the point of discontinuity to the square of the microparticle size. A model of charge formation on the microparticles is developed proceeding from the experimental data and current concept of the electron gas in metals. The model makes it possible to determine the charge of the microparticle using data on the particle size and mechanical and electrical properties of the material. Model estimates of the total charge of particles show order-of-magnitude agreement with the experimental data.



Author(s):  
Hiroaki Nakao ◽  
Akira Shirakawa ◽  
Ken-ichi Ueda ◽  
Hideki Yagi ◽  
Takagimi Yanagitani


Electronics ◽  
2021 ◽  
Vol 10 (14) ◽  
pp. 1685
Author(s):  
Sakorn Mekruksavanich ◽  
Anuchit Jitpattanakul

Sensor-based human activity recognition (S-HAR) has become an important and high-impact topic of research within human-centered computing. In the last decade, successful applications of S-HAR have been presented through fruitful academic research and industrial applications, including for healthcare monitoring, smart home controlling, and daily sport tracking. However, the growing requirements of many current applications for recognizing complex human activities (CHA) have begun to attract the attention of the HAR research field when compared with simple human activities (SHA). S-HAR has shown that deep learning (DL), a type of machine learning based on complicated artificial neural networks, has a significant degree of recognition efficiency. Convolutional neural networks (CNNs) and recurrent neural networks (RNNs) are two different types of DL methods that have been successfully applied to the S-HAR challenge in recent years. In this paper, we focused on four RNN-based DL models (LSTMs, BiLSTMs, GRUs, and BiGRUs) that performed complex activity recognition tasks. The efficiency of four hybrid DL models that combine convolutional layers with the efficient RNN-based models was also studied. Experimental studies on the UTwente dataset demonstrated that the suggested hybrid RNN-based models achieved a high level of recognition performance along with a variety of performance indicators, including accuracy, F1-score, and confusion matrix. The experimental results show that the hybrid DL model called CNN-BiGRU outperformed the other DL models with a high accuracy of 98.89% when using only complex activity data. Moreover, the CNN-BiGRU model also achieved the highest recognition performance in other scenarios (99.44% by using only simple activity data and 98.78% with a combination of simple and complex activities).



Energies ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1830
Author(s):  
Yiheng Zhou ◽  
Baoquan Kou ◽  
He Zhang ◽  
Lu Zhang ◽  
Likun Wang

The multi-degree-of-freedom high-precision positioning system (MHPS) is one of the key technologies in many advanced industrial applications. In this paper, a novel hyperbolic magnetic field voice coil actuator using a rhombus magnet array (HMF-VCA) for MHPS is proposed. Benefiting from the especially designed rhombus magnet array, the proposed HMF-VCA has the advantage of excellent force uniformity, which makes it suitable for multi-degree-of-freedom high-precision positioning applications. First, the basic structure and operation principles of the HMF-VCA are presented. Second, the six-degree-of-freedom force and torque characteristic of the HMF-VCA is studied by three-dimensional finite element analysis (3-D FEA). Third, the influence of structural parameters on force density and force uniformity is investigated, which is conducive to the design and optimization of the HMF-VCA. Finally, a prototype is constructed, and the comparison between the HMF-VCA and conventional VCAs proves the advantage of the proposed topology.



2019 ◽  
Vol 108 (1) ◽  
pp. 11-17
Author(s):  
Mert Şekerci ◽  
Hasan Özdoğan ◽  
Abdullah Kaplan

Abstract One of the methods used to treat different cancer diseases is the employment of therapeutic radioisotopes. Therefore, many clinical, theoretical and experimental studies are being carried out on those radioisotopes. In this study, the effects of level density models and gamma ray strength functions on the theoretical production cross-section calculations for the therapeutic radioisotopes 90Y, 153Sm, 169Er, 177Lu and 186Re in the (n,γ) route have been investigated. TALYS 1.9 code has been used by employing different level density models and gamma ray strength functions. The theoretically obtained data were compared with the experimental data taken from the literature. The results are presented graphically for better interpretation.



1981 ◽  
Vol 21 (06) ◽  
pp. 747-762 ◽  
Author(s):  
Karl E. Bennett ◽  
Craig H.K. Phelps ◽  
H. Ted Davis ◽  
L.E. Scriven

Abstract The phase behavior of microemulsions of brine, hydrocarbon, alcohol, and a pure alkyl aryl sulfonate-sodium 4-(1-heptylnonyl) benzenesulfonate (SHBS or Texas 1) was investigated as a function of the concentration of salt (NaCl, MgCl2, or CaCl2), the hydrocarbon (n-alkanes, octane to hexadecane), the alcohol (butyl and amyl isomers), the concentration of surfactant, and temperature. The phase behavior mimics that of similar systems with the commercial surfactant Witco TRS 10–80. The phase volumes follow published trends, though with exceptions.A mathematical framework is presented for modeling phase behavior in a manner consistent with the thermodynamically required critical tie lines and plait point progressions from the critical endpoints. Hand's scheme for modeling binodals and Pope and Nelson's approach to modeling the evolution of the surfactant-rich third phase are extended to satisfy these requirements.An examination of model-generated progressions of ternary phase diagrams enhances understanding of the experimental data and reveals correlations of relative phase volumes (volume uptakes) with location of the mixing point (overall composition) relative to the height of the three-phase region and the locations of the critical tie lines (critical endpoints and conjugate phases). The correlations account, on thermodynamic grounds, for cases in which the surfactant is present in more than one phase or the phase volumes change discontinuously, both cases being observed in the experimental study. Introduction The phase behavior of a surfactant-based micellar formulation is one of the major factors governing the displacement efficiency of any chemical flooding process employing that formulation. Knowledge of phase behavior is, thus, important for the interpretation of laboratory core floods, the design of flooding processes, and the evaluation of field tests. Phase behavior is connected intimately with other determinants of the flooding process, such as interfacial tension and viscosity. Since the number of equilibrium phases and their volumes and appearances are easier to measure and observe than phase compositions, viscosities, and interfacial tensions, there is great interest in understanding the phase-volume/phase-property relationships. Commercial surfactants, such as Witco TRS 10-80, are sulfonates of crude or partially refined oil. While they seem to be the most economically practicable surfactants for micellar flooding, their behavior, particularly with crude oils and reservoir brines, can be difficult to interpret, the phases varying with time and from batch to batch. Phase behavior studies with a small number of components, in conjunction with a theoretical understanding of phase behavior progressions, can aid in understanding more complex behavior. In particular, one can begin to appreciate which seemingly abnormal experimental observations (e.g., surfactant present in more than one phase or a discontinuity in phase volume trends) are merely features of certain regions of any phase diagram and which are peculiar to the specific crude oil or commercial surfactant used in the study.We report here experimental studies of the phase behavior of microemulsions of a pure sulfonate surfactant (Texas 1), a single normal alkane hydrocarbon, a simple brine, and a small amount of a suitable alcohol as cosurfactant or cosolvent. The controlled variables are hydrocarbon chain length, alcohol, salinity, salt type (NaCl, MgCl2, or CaCl2), surfactant purity, surfactant concentration, and temperature. Many of these experimental data were presented earlier. SPEJ P. 747^



Author(s):  
Patrick J. Migliorini ◽  
Alexandrina Untaroiu ◽  
William C. Witt ◽  
Neal R. Morgan ◽  
Houston G. Wood

Annular seals are used in turbomachinery to reduce secondary flow between regions of high and low pressure. In a vibrating rotor system, the non-axisymmetric pressure field developed in the small clearance between the rotor and the seal generate reactionary forces that can affect the stability of the entire rotor system. Traditionally, two analyses have been used to study the fluid flow in seals, bulk-flow analysis and computational fluid dynamics (CFD). Bulk-flow methods are computational inexpensive, but solve simplified equations that rely on empirically derived coefficients and are moderately accurate. CFD analyses generally provide more accurate results than bulk-flow codes, but solution time can vary between days and weeks. For gas damper seals, these analyses have been developed with the assumption that the flow can be treated as isothermal. Some experimental studies show that the difference between the inlet and outlet temperature temperatures is less than 5% but initial CFD studies show that there can be a significant temperature change which can have an effect on the density field. Thus, a comprehensive analysis requires the solution of an energy equation. Recently, a new hybrid method that employs a CFD analysis for the base state, unperturbed flow and a bulk-flow analysis for the first order, perturbed flow has been developed. This method has shown to compare well with full CFD analysis and experimental data while being computationally efficient. In this study, the previously developed hybrid method is extended to include the effects of non-isothermal flow. The hybrid method with energy equation is then compared with the isothermal hybrid method and experimental data for several test cases of hole-pattern seals and the importance of the use of energy equation is studied.



Author(s):  
Zhiwei Chen ◽  
Caifu Qian ◽  
Guoyi Yang ◽  
Xiang Li

The test of austenitic stainless steel specimens with strain control mode of pre-strain was carried out. The range of pre-strain is 4%, 5%, 6%, 7%, 8%, 9% and 10% on austenitic stainless steel specimens, then tensile testing of these samples was done and their mechanical properties after pre-strain were gotten. The results show that the pre-strain has little effect on tensile strength, and enhances the yield strength more obviously. According to the experimental data, we get a relational expression of S30408 between the value of yield strength and pre-strain. We can obtain several expressions about different kinds of austenitic stainless steel by this way. It is convenient for designers to get the yield strength of austenitic stainless steel after pre-strain by the value of pre-strain and the above expression.



2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Suchitra Rajput ◽  
Sujeet Chaudhary

We report on the analyses of fluctuation induced excess conductivity in the - behavior in the in situ prepared MgB2 tapes. The scaling functions for critical fluctuations are employed to investigate the excess conductivity of these tapes around transition. Two scaling models for excess conductivity in the absence of magnetic field, namely, first, Aslamazov and Larkin model, second, Lawrence and Doniach model, have been employed for the study. Fitting the experimental - data with these models indicates the three-dimensional nature of conduction of the carriers as opposed to the 2D character exhibited by the HTSCs. The estimated amplitude of coherence length from the fitted model is ~21 Å.



Sign in / Sign up

Export Citation Format

Share Document