Am I Too Rich?: Determining Limits for Gas Composition to Ensure Crack Arrest in an Existing Pipeline

Author(s):  
Robert M. Andrews ◽  
Michael Smith

Fracture control studies for new gas transmission pipelines usually produce a specified minimum Charpy energy, often including “correction factors”, which will ensure that a crack will arrest in the body of the pipe. The basic pipeline parameters such as pressure, pipe grade, diameter and wall thickness will be fixed early in design, and the reservoir and process engineering design will set limits on the extremes of the gas composition. The inverse case, where the gas composition in an existing pipeline is to be changed from the original design basis, is more challenging. Changes in composition can arise from ageing of the reservoir supplying a pipeline, or opportunities for the operator to generate additional revenue from 3rd party access. Sales gas specification limits for general purpose natural gas transmission often have broad limits, which can be met by a wide range of compositions. As a wide range of gas compositions can give the same crack driving force, determining the composition limits is a “many to one” problem without a unique solution. This paper describes the derivation of an envelope of richer gas compositions which gave an acceptable probability of crack arrest in an existing pipeline which had originally been designed for a very lean gas mixture. Hence it was necessary to limit the amount of rich third party gas to ensure that the crack driving force did not increase sufficiently to propagate a long running fracture. Manufacturing test data for the linepipe were used with the EPRG probabilistic approach to derive a characteristic Charpy energy which would achieve a 95% probability of crack arrest in 5 joints or fewer. After “uncorrecting” the high Charpy energy, the value was used with the Battelle Two Curve model to analyse a range of gas compositions and derive an envelope of acceptable compositions. Sensitivity studies were carried out to assess the effects of increasing the temperature and of expanding the limits for nitrogen and carbon dioxide beyond the initial assumptions. It is concluded that for a specific case it will be possible to solve the inverse problem and produce composition limits which will allow increased flexibility of operation whilst maintaining safety.

1977 ◽  
Vol 99 (1) ◽  
pp. 112-121 ◽  
Author(s):  
C. Popelar ◽  
A. R. Rosenfield ◽  
M. F. Kanninen

Previous work at Battelle-Columbus on the development of a theoretical model for unstable crack propagation and crack arrest in a pressurized pipeline is extended in this paper by including the effect of backfill. The approach being developed involves four essential aspects of crack propagation in pipelines. These four components of the problem are: 1 – a shell theory characterization of the dynamic deformation of a pipe with a plastic yield-hinge behind an axially propagating crack, 2 – a fluid-mechanics treatment of the axial variations in the gas pressure acting on the pipe walls, 3 – an energy-based dynamic fracture mechanics formulation for the crack-driving force, and 4 – measured values of the dynamic energy absorption rate for pipeline steels. Comparisons given in the paper show that the steady-state crack speeds predicted by the model are in reasonably good agreement with the crack speeds measured in full-scale tests, both with and without backfill. The analysis further reveals the existence of a maximum steady-state crack-driving force as a function of the basic mechanical properties of the pipe steel and the pipeline goemetry and operating conditions. Quantitative estimates of this quantity provided by the model offer a basis for comparison with the empirical crack-arrest design criteria for pipelines developed by AISI, the American Gas Association, the British Gas Council, and British Steel. These are also shown to be in substantial agreement with the predictions of the model developed in this paper.


Author(s):  
V. S. Kovalevich ◽  
I. V. Kachanov ◽  
I. M. Shatalov ◽  
V. V. Veremenyuk ◽  
A. V. Filipchik

It is shown that it is very effective to remove corrosion products from various surfaces, including the metal surface of the propeller, using the new technology of reverse-jet cleaning (RJC) developed by the authors. The RJS technology is based on the physical principle that the jet of the working fluid (pulp based on river sand or bentonite clay), upon impact with the surface to be cleaned, turns 180°, which leads to an increase in the jet effect on the surface to be cleaned by 1.5–2 times due to the occurrence of the reactive component. To ensure the marked turn of the jet, an original design of the body was developed, which is distinguished by a patent novelty. One of the main elements in this design is a jet-forming device in the form of a confuser. The presented theoretical studies of the pressure loss of the working fluid in the confuser channel, based on the study of the pressure loss function to the extremum, which made it possible to obtain a dependence for calculating the optimal taper angle in a wide range of Reynolds numbers characterizing the turbulent mode of motion taking into account the influence of the working fluid density and its dynamic viscosity, the average speed of movement of the working fluid, the radius of the confuser, as well as the coefficient of equivalent roughness, i.e. from gradual wear of the confuser channel. The resulting dependence can be recommended for calculation in the design of jet cleaning devices and other installations of jet technology.


Author(s):  
Ming Liu ◽  
Yong-Yi Wang

It has been well-established that the experimentally measured toughness of materials depends on the crack-tip constraint levels. Accurate assessment of the integrity of real structures requires that the laboratory tests be conducted at similar constraint levels as those experienced by the structures. Conventional laboratory tests are usually designed at high constraint levels to obtain “conservative” toughness values. However, pipelines usually experience low-constraint loads; therefore the assessment results using the conventional laboratory test data can be overly conservative. Back-bend specimen is designed as a low-constraint laboratory test. To obtain the fracture toughness from the test, it is necessary to develop a correlation between the crack driving force, i.e. the crack tip opening displacement (CTOD), and the overall load and displacement. A semi-analytical correlation equation for back-bend tests is presented in this paper. The equation is based on the slip-line theory which was originally developed for rigid-perfectly plastic materials under plane strain conditions. The equation has been extended to take account of the elasticity, yield strength, and strain hardening of the materials. The geometry factors such as the ligament thinning and finite thickness are also investigated. The predicted CTOD driving force by the correlation equation shows a good match with the finite element calculations for a wide range of material properties and specimen dimensions.


2020 ◽  
Vol 2 (4) ◽  
pp. 14-31
Author(s):  
Élodie Dupey García

This article explores how the Nahua of late Postclassic Mesoamerica (1200–1521 CE) created living and material embodiments of their wind god constructed on the basis of sensory experiences that shaped their conception of this divinized meteorological phenomenon. In this process, they employed chromatic and design devices, based on a wide range of natural elements, to add several layers of meaning to the human, painted, and sculpted supports dressed in the god’s insignia. Through a comparative examination of pre-Columbian visual production—especially codices and sculptures—historical sources mainly written in Nahuatl during the viceregal period, and ethnographic data on indigenous communities in modern Mexico, my analysis targets the body paint and shell jewelry of the anthropomorphic “images” of the wind god, along with the Feathered Serpent and the monkey-inspired embodiments of the deity. This study identifies the centrality of other human senses beyond sight in the conception of the wind god and the making of its earthly manifestations. Constructing these deity “images” was tantamount to creating the wind because they were intended to be visual replicas of the wind’s natural behavior. At the same time, they referred to the identity and agency of the wind god in myths and rituals.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1031
Author(s):  
Joseba Gorospe ◽  
Rubén Mulero ◽  
Olatz Arbelaitz ◽  
Javier Muguerza ◽  
Miguel Ángel Antón

Deep learning techniques are being increasingly used in the scientific community as a consequence of the high computational capacity of current systems and the increase in the amount of data available as a result of the digitalisation of society in general and the industrial world in particular. In addition, the immersion of the field of edge computing, which focuses on integrating artificial intelligence as close as possible to the client, makes it possible to implement systems that act in real time without the need to transfer all of the data to centralised servers. The combination of these two concepts can lead to systems with the capacity to make correct decisions and act based on them immediately and in situ. Despite this, the low capacity of embedded systems greatly hinders this integration, so the possibility of being able to integrate them into a wide range of micro-controllers can be a great advantage. This paper contributes with the generation of an environment based on Mbed OS and TensorFlow Lite to be embedded in any general purpose embedded system, allowing the introduction of deep learning architectures. The experiments herein prove that the proposed system is competitive if compared to other commercial systems.


Computers ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 82
Author(s):  
Ahmad O. Aseeri

Deep Learning-based methods have emerged to be one of the most effective and practical solutions in a wide range of medical problems, including the diagnosis of cardiac arrhythmias. A critical step to a precocious diagnosis in many heart dysfunctions diseases starts with the accurate detection and classification of cardiac arrhythmias, which can be achieved via electrocardiograms (ECGs). Motivated by the desire to enhance conventional clinical methods in diagnosing cardiac arrhythmias, we introduce an uncertainty-aware deep learning-based predictive model design for accurate large-scale classification of cardiac arrhythmias successfully trained and evaluated using three benchmark medical datasets. In addition, considering that the quantification of uncertainty estimates is vital for clinical decision-making, our method incorporates a probabilistic approach to capture the model’s uncertainty using a Bayesian-based approximation method without introducing additional parameters or significant changes to the network’s architecture. Although many arrhythmias classification solutions with various ECG feature engineering techniques have been reported in the literature, the introduced AI-based probabilistic-enabled method in this paper outperforms the results of existing methods in outstanding multiclass classification results that manifest F1 scores of 98.62% and 96.73% with (MIT-BIH) dataset of 20 annotations, and 99.23% and 96.94% with (INCART) dataset of eight annotations, and 97.25% and 96.73% with (BIDMC) dataset of six annotations, for the deep ensemble and probabilistic mode, respectively. We demonstrate our method’s high-performing and statistical reliability results in numerical experiments on the language modeling using the gating mechanism of Recurrent Neural Networks.


Dermatology ◽  
2021 ◽  
pp. 1-9
Author(s):  
María Luisa Peralta-Pedrero ◽  
Denisse Herrera-Bringas ◽  
Karla Samantha Torres-González ◽  
Martha Alejandra Morales-Sánchez ◽  
Fermín Jurado Santa-Cruz ◽  
...  

<b><i>Background:</i></b> Vitiligo has an unpredictable course and a variable response to treatment. Furthermore, the improvement of some vitiligo lesions cannot be considered a guarantee of a similar response to the other lesions. Instruments for patient-reported outcome measures (PROM) can be an alternative to measure complex constructions such as clinical evolution. <b><i>Objective:</i></b> The aim of this study was to validate a PROM that allows to measure the clinical evolution of patients with nonsegmental vitiligo in a simple but standardized way that serves to gather information for a better understanding of the disease. <b><i>Methods:</i></b> The instrument was created through expert consensus and patient participation. For the validation study, a prospective cohort design was performed. The body surface area affected was measured with the Vitiligo Extension Score (VES), the extension, the stage, and the spread by the evaluation of the Vitiligo European Task Force assessment (VETFa). Reliability was determined with test-retest, construct validity through hypothesis testing, discriminative capacity with extreme groups, and response capacity by comparing initial and final measurements. <b><i>Results:</i></b> Eighteen semi-structured interviews and 7 cognitive interviews were conducted, and 4 dermatologists were consulted. The instrument Clinical Evolution-Vitiligo (CV-6) was answered by 119 patients with a minimum of primary schooling. A wide range was observed in the affected body surface; incident and prevalent cases were included. The average time to answer the CV-6 was 3.08 ± 0.58 min. In the test-retest (<i>n</i> = 53), an intraclass correlation coefficient was obtained: 0.896 (95% CI 0.82–0.94; <i>p</i> &#x3c; 0.001). In extreme groups, the mean score was 2 (2–3) and 5 (4–6); <i>p</i> &#x3c; 0.001. The initial CV-6 score was different from the final one and the change was verified with VES and VETFa (<i>p</i> &#x3c; 0.05, <i>n</i> = 92). <b><i>Conclusions:</i></b> The CV-6 instrument allows patient collaboration, it is simple and brief, and it makes it easier for the doctor to focus attention on injuries that present changes at the time of medical consultation.


1975 ◽  
Vol 67 (4) ◽  
pp. 787-815 ◽  
Author(s):  
Allen T. Chwang ◽  
T. Yao-Tsu Wu

The present study further explores the fundamental singular solutions for Stokes flow that can be useful for constructing solutions over a wide range of free-stream profiles and body shapes. The primary singularity is the Stokeslet, which is associated with a singular point force embedded in a Stokes flow. From its derivatives other fundamental singularities can be obtained, including rotlets, stresslets, potential doublets and higher-order poles derived from them. For treating interior Stokes-flow problems new fundamental solutions are introduced; they include the Stokeson and its derivatives, called the roton and stresson.These fundamental singularities are employed here to construct exact solutions to a number of exterior and interior Stokes-flow problems for several specific body shapes translating and rotating in a viscous fluid which may itself be providing a primary flow. The different primary flows considered here include the uniform stream, shear flows, parabolic profiles and extensional flows (hyper-bolic profiles), while the body shapes cover prolate spheroids, spheres and circular cylinders. The salient features of these exact solutions (all obtained in closed form) regarding the types of singularities required for the construction of a solution in each specific case, their distribution densities and the range of validity of the solution, which may depend on the characteristic Reynolds numbers and governing geometrical parameters, are discussed.


Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4459
Author(s):  
José R. González ◽  
Charbel Damião ◽  
Maira Moran ◽  
Cristina A. Pantaleão ◽  
Rubens A. Cruz ◽  
...  

According to experts and medical literature, healthy thyroids and thyroids containing benign nodules tend to be less inflamed and less active than those with malignant nodules. It seems to be a consensus that malignant nodules have more blood veins and more blood circulation. This may be related to the maintenance of the nodule’s heat at a higher level compared with neighboring tissues. If the internal heat modifies the skin radiation, then it could be detected by infrared sensors. The goal of this work is the investigation of the factors that allow this detection, and the possible relation with any pattern referent to nodule malignancy. We aim to consider a wide range of factors, so a great number of numerical simulations of the heat transfer in the region under analysis, based on the Finite Element method, are performed to study the influence of each nodule and patient characteristics on the infrared sensor acquisition. To do so, the protocol for infrared thyroid examination used in our university’s hospital is simulated in the numerical study. This protocol presents two phases. In the first one, the body under observation is in steady state. In the second one, it is submitted to thermal stress (transient state). Both are simulated in order to verify if it is possible (by infrared sensors) to identify different behavior referent to malignant nodules. Moreover, when the simulation indicates possible important aspects, patients with and without similar characteristics are examined to confirm such influences. The results show that the tissues between skin and thyroid, as well as the nodule size, have an influence on superficial temperatures. Other thermal parameters of thyroid nodules show little influence on surface infrared emissions, for instance, those related to the vascularization of the nodule. All details of the physical parameters used in the simulations, characteristics of the real nodules and thermal examinations are publicly available, allowing these simulations to be compared with other types of heat transfer solutions and infrared examination protocols. Among the main contributions of this work, we highlight the simulation of the possible range of parameters, and definition of the simulation approach for mapping the used infrared protocol, promoting the investigation of a possible relation between the heat transfer process and the data obtained by infrared acquisitions.


2021 ◽  
Vol 2 (1) ◽  
pp. 63-81
Author(s):  
Sajana Manandhar ◽  
Erica Sjöholm ◽  
Johan Bobacka ◽  
Jessica M. Rosenholm ◽  
Kuldeep K. Bansal

Since the last decade, the polymer-drug conjugate (PDC) approach has emerged as one of the most promising drug-delivery technologies owing to several benefits like circumventing premature drug release, offering controlled and targeted drug delivery, improving the stability, safety, and kinetics of conjugated drugs, and so forth. In recent years, PDC technology has advanced with the objective to further enhance the treatment outcomes by integrating nanotechnology and multifunctional characteristics into these systems. One such development is the ability of PDCs to act as theranostic agents, permitting simultaneous diagnosis and treatment options. Theranostic nanocarriers offer the opportunity to track the distribution of PDCs within the body and help to localize the diseased site. This characteristic is of particular interest, especially among those therapeutic approaches where external stimuli are supposed to be applied for abrupt drug release at the target site for localized delivery to avoid systemic side effects (e.g., Visudyne®). Thus, with the help of this review article, we are presenting the most recent updates in the domain of PDCs as nanotheranostic agents. Different methodologies utilized to design PDCs along with imaging characteristics and their applicability in a wide range of diseases, have been summarized in this article.


Sign in / Sign up

Export Citation Format

Share Document