The Effect of Pressure on the Microstructural Behavior on SnO2 Thin Films Deposited by RF Sputtering

Author(s):  
Mehmet Oguz Guler ◽  
Mirac Alaf ◽  
Deniz Gultekin ◽  
Hatem Akbulut ◽  
Ahmet Alp

Tin oxide has multiple technological applications including Li-ion batteries, gas sensors, optoelectronic devices, transparent conductors and solar cells. In this study tin dioxide (SnO2) thin films were deposited on glass substrates by RF sputtering process in the oxygen (O2) and argon (Ar) plasma medium. The deposition of the thin SnO2 films was carried out by RF sputtering from SnO2 targets. Before deposition the system was evacuated to 10−4 torr vacuum level and backfilled with Ar. The deposition of the nano structured thin SnO2 films have been performed at different gas pressures. The deposition of the SnO2 was both carried out at different pure argon gas pressures and argon/oxygen mediums with varying oxygen partial pressures. The effect of argon and argon/oxygen partial gas pressures on the grain structure and film thickness were analyzed in the resultant thin films. The deposited thin films both on glass and stainless steel substrates were characterized with scanning electron microscopy (SEM), X-ray diffractometry equipped with multi purpose attachment. The grain size of the deposited layer was determined by X-ray analysis. The Atomic Force Microscopy (AFM) technique was also conducted on the some selected coatings to reveal grain structure and growth behaviors.

2011 ◽  
Vol 194-196 ◽  
pp. 2340-2346 ◽  
Author(s):  
Hong Yu Liang ◽  
Qing Nan Zhao ◽  
Feng Gao ◽  
Wen Hui Yuan ◽  
Yu Hong Dong

With a mixture gas of N2 and Ar, silicon nitride thin films were deposited on glass substrates by different radio frequency (RF) magnetron sputtering power without intentional substrate heating. The chemical composition, phase structure, surface morphology, optical properties, refractive index, hydrophobic properties of the films were characterized by X-ray energy dispersive spectroscopy(EDS), X-ray diffraction(XRD), field emission scanning electron microscopy(FESEM), ultraviolet-visible spectroscopy(UV-Vis), nkd-system spectrophotometer and CA-XP150 contact angle analyzer, respectively. The results showed that silicon nitride thin films were amorphous and rich in Si; the transmittance reduced but refractive index and surface roughness increased; and the hydrophobic properties of SiNx became better with the increase of RF power.


1993 ◽  
Vol 8 (7) ◽  
pp. 1481-1483 ◽  
Author(s):  
I. Yagi ◽  
Y. Hagiwara ◽  
K. Murakami ◽  
S. Kaneko

Highly oriented SnO2 thin films have been grown successfully from tetra-n-butyltin on heated glass substrates by a pneumatic spraying system. The effects of film growth rate and substrate temperature on the microstructures of the films were investigated by x-ray diffraction and scanning electron microscopy. The SnO2 films of preferentially oriented (110) crystal plane were grown under the optimum growth conditions.


Author(s):  
F. Ma ◽  
S. Vivekanand ◽  
K. Barmak ◽  
C. Michaelsen

Solid state reactions in sputter-deposited Nb/Al multilayer thin films have been studied by transmission and analytical electron microscopy (TEM/AEM), differential scanning calorimetry (DSC) and X-ray diffraction (XRD). The Nb/Al multilayer thin films for TEM studies were sputter-deposited on (1102)sapphire substrates. The periodicity of the films is in the range 10-500 nm. The overall composition of the films are 1/3, 2/1, and 3/1 Nb/Al, corresponding to the stoichiometric composition of the three intermetallic phases in this system.Figure 1 is a TEM micrograph of an as-deposited film with periodicity A = dA1 + dNb = 72 nm, where d's are layer thicknesses. The polycrystalline nature of the Al and Nb layers with their columnar grain structure is evident in the figure. Both Nb and Al layers exhibit crystallographic texture, with the electron diffraction pattern for this film showing stronger diffraction spots in the direction normal to the multilayer. The X-ray diffraction patterns of all films are dominated by the Al(l 11) and Nb(l 10) peaks and show a merging of these two peaks with decreasing periodicity.


2016 ◽  
Vol 12 (3) ◽  
pp. 4394-4399
Author(s):  
Sura Ali Noaman ◽  
Rashid Owaid Kadhim ◽  
Saleem Azara Hussain

Tin Oxide and Indium doped Tin Oxide (SnO2:In) thin films were deposited on glass and Silicon  substrates  by  thermal evaporation technique.  X-ray diffraction pattern of  pure SnO2 and SnO2:In thin films annealed at 650oC and the results showed  that the structure have tetragonal phase with preferred orientation in (110) plane. AFM studies showed an inhibition of grain growth with increase in indium concentration. SEM studies of pure  SnO2 and  Indium doped tin oxide (SnO2:In) ) thin films showed that the films with regular distribution of particles and they have spherical shape.  Optical properties such as  Transmission , optical band-gap have been measured and calculated.


2019 ◽  
Vol 15 (34) ◽  
pp. 1-14
Author(s):  
Bushra A. Hasan

Lead selenide PbSe thin films of different thicknesses (300, 500, and 700 nm) were deposited under vacuum using thermal evaporation method on glass substrates. X-ray diffraction measurements showed that increasing of thickness lead to well crystallize the prepared samples, such that the crystallite size increases while the dislocation density decreases with thickness increasing. A.C conductivity, dielectric constants, and loss tangent are studied as function to thickness, frequency (10kHz-10MHz) and temperatures (293K-493K). The conductivity measurements confirm confirmed that hopping is the mechanism responsible for the conduction process. Increasing of thickness decreases the thermal activation energy estimated from Arhinus equation is found to decrease with thickness increasing. The increase of thickness lead to reduce the polarizability α while the increasing of temperature lead to increase α.


Surfaces ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 106-114
Author(s):  
Yannick Hermans ◽  
Faraz Mehmood ◽  
Kerstin Lakus-Wollny ◽  
Jan P. Hofmann ◽  
Thomas Mayer ◽  
...  

Thin films of ZnWO4, a promising photocatalytic and scintillator material, were deposited for the first time using a reactive dual magnetron sputtering procedure. A ZnO target was operated using an RF signal, and a W target was operated using a DC signal. The power on the ZnO target was changed so that it would match the sputtering rate of the W target operated at 25 W. The effects of the process parameters were characterized using optical spectroscopy, X-ray diffraction, and scanning electron microscopy, including energy dispersive X-ray spectroscopy as well as X-ray photoelectron spectroscopy. It was found that stoichiometric microcrystalline ZnWO4 thin films could be obtained, by operating the ZnO target during the sputtering procedure at a power of 55 W and by post-annealing the resulting thin films for at least 10 h at 600 °C. As FTO coated glass substrates were used, annealing led as well to the incorporation of Na, resulting in n+ doped ZnWO4 thin films.


2011 ◽  
Vol 126 (1) ◽  
pp. 117-124 ◽  
Author(s):  
Sergio Almeida ◽  
Brandon Aguirre ◽  
Noel Marquez ◽  
John McClure ◽  
David Zubia

2001 ◽  
Vol 695 ◽  
Author(s):  
M.J. Daniels ◽  
D. King ◽  
J.S. Zabinski ◽  
Z.U. Rek ◽  
J.C. Bilello

ABSTRACTQuasicrystalline films were formed by RF sputtering from a powder composite target onto Inconel substrates, which produces a polymorphic nanoquasicrystalline grain structure, ~2.5 - 10 nm. Subsequent annealing at 500°C for 4 hours, at base pressures of below 5*10-5 Torr, and with Ar flow to 5 - 10 mT, fully develops the quasicrystalline structure with decagonal phase predominating, except near the termination surface. Analysis by XPS indicated extensive oxygen incorporation and limited aluminum enrichment at the termination surface. These results are correlated with structure and strain analysis via synchrotron grazing incidence x-ray scattering (GIXS). By varying the incident angle, hence the x-ray penetration depth, the evolution of an amorphous and crystalline crystalline secondary phases at the surface of the film has been detected. Residual strain analysis shows that this second phase induces a compressive residual strain of 0.10% as measured from the displacement of the major quasicrystalline peaks in the surface layers of the film.


2011 ◽  
Vol 1328 ◽  
Author(s):  
KyoungMoo Lee ◽  
Yoshio Abe ◽  
Midori Kawamura ◽  
Hidenobu Itoh

ABSTRACTCobalt hydroxide thin films with a thickness of 100 nm were deposited onto glass, Si and indium tin oxide (ITO)-coated glass substrates by reactively sputtering a Co target in H2O gas. The substrate temperature was varied from -20 to +200°C. The EC performance of the films was investigated in 0.1 M KOH aqueous solution. X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy of the samples indicated that Co3O4 films were formed at substrate temperatures above 100°C, and amorphous CoOOH films were deposited in the range from 10 to -20°C. A large change in transmittance of approximately 26% and high EC coloration efficiency of 47 cm2/C were obtained at a wavelength of 600 nm for the CoOOH thin film deposited at -20°C. The good EC performance of the CoOOH films is attributed to the low film density and amorphous structure.


2019 ◽  
Vol 9 (21) ◽  
pp. 4509
Author(s):  
Weijia Yang ◽  
Fengming Wang ◽  
Zeyi Guan ◽  
Pengyu He ◽  
Zhihao Liu ◽  
...  

In this work, we reported a comparative study of ZnO thin films grown on quartz glass and sapphire (001) substrates through magnetron sputtering and high-temperature annealing. Firstly, the ZnO thin films were deposited on the quartz glass and sapphire (001) substrates in the same conditions by magnetron sputtering. Afterwards, the sputtered ZnO thin films underwent an annealing process at 600 °C for 1 h in an air atmosphere to improve the quality of the films. X-ray diffraction, scanning electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy (XPS), ultraviolet-visible spectra, photoluminescence spectra, and Raman spectra were used to investigate the structural, morphological, electrical, and optical properties of the both as-received ZnO thin films. The ZnO thin films grown on the quartz glass substrates possess a full width of half maximum value of 0.271° for the (002) plane, a surface root mean square value of 0.50 nm and O vacancies/defects of 4.40% in the total XPS O 1s peak. The comparative investigation reveals that the whole properties of the ZnO thin films grown on the quartz glass substrates are comparable to those grown on the sapphire (001) substrates. Consequently, ZnO thin films with high quality grown on the quartz glass substrates can be achieved by means of magnetron sputtering and high-temperature annealing at 600 °C.


Sign in / Sign up

Export Citation Format

Share Document