Wave-Current Interaction Effects on Airgap Calculations

Author(s):  
Elin Marita Hermundstad ◽  
Jan Roger Hoff ◽  
Nuno Fonseca ◽  
Rune Bjørkli

The importance of wave-current interaction effects on the determination of mean drift forces on floating offshore structures is well documented. Wave-current interaction effects will also influence the first-order motions and loads as well as the diffracted and radiated waves around the structure. One of the significant contributions to the influence of wave-current interaction effects on the motion responses is the additional coupling between motion modes due to the current. These effects are well known from seakeeping calculations of ships with forward speed. A structure with fore-aft symmetry will have no hydrodynamic coupling between heave and pitch in regular waves only. Due to the presence of a current, the symmetry of the flow around the body is lost, resulting in hydrodynamic coupling between the modes. This will also occur for a moored structure with slowly varying motions in the horizontal plane. The most important couplings are from the heave motion into pitch and surge and from heave to roll and sway. These couplings are otherwise present only for asymmetric structures. Due to the presence of the heave resonance and cancellation periods, the motion responses in roll and pitch for a semi-submersible will be influenced by the wave-current interaction effects. Due to the differences in phase between the different motion modes, the hydrodynamic coupling may have significant influence on the rotational motions roll and pitch and thus significant influence on the prediction of airgap. This coupling between the heave and roll/pitch modes due to the current adds complexity to the numerical simulations since the structure responses are more sensitive to the actual orientation of the structure, mooring configuration etc. A three-dimensional linear potential flow code, MULDIF, has been developed by SINTEF Ocean. This code accounts for hydrodynamic interaction between waves and current from arbitrary directions. The code can be applied to single or multiple bodies in infinite or finite water depth. Verification studies have previously shown good agreement with other numerical codes, Hermundstad et.al. [1], Zhiyuan et.al [2]. Validation studies with emphasis on airgap and comparison with experimental results are presented and numerical results for airgap and upwell are visualized and discussed. It is demonstrated how MULDIF can be used in airgap studies.

Author(s):  
O. Faroon ◽  
F. Al-Bagdadi ◽  
T. G. Snider ◽  
C. Titkemeyer

The lymphatic system is very important in the immunological activities of the body. Clinicians confirm the diagnosis of infectious diseases by palpating the involved cutaneous lymph node for changes in size, heat, and consistency. Clinical pathologists diagnose systemic diseases through biopsies of superficial lymph nodes. In many parts of the world the goat is considered as an important source of milk and meat products.The lymphatic system has been studied extensively. These studies lack precise information on the natural morphology of the lymph nodes and their vascular and cellular constituent. This is due to using improper technique for such studies. A few studies used the SEM, conducted by cutting the lymph node with a blade. The morphological data collected by this method are artificial and do not reflect the normal three dimensional surface of the examined area of the lymph node. SEM has been used to study the lymph vessels and lymph nodes of different animals. No information on the cutaneous lymph nodes of the goat has ever been collected using the scanning electron microscope.


Edum Journal ◽  
2018 ◽  
Vol 1 (2) ◽  
pp. 106-117
Author(s):  
Khamim Khamim ◽  
Wresni Pujiyati

The main focus of this research is on the self-concept and pedagogical competence of the teacher and its influence on the quality of the learning process both partially and double. The research method used is a survey method in which the authors go directly to the empirical level by distributing questionnaires to 47 teachers. The processing and analysis techniques used are linear and multiple regression. The results of the study show that: (1) There is a positive and significant influence of the teacher's self-concept on the quality of the learning process (2) There is a positive and significant influence on the teacher's pedagogical competence on the quality of the learning process. (3) There is a positive and significant effect of self-concept and pedagogical competence of teachers together on the quality of the learning process. Therefore, the authors suggest: (1) So that the teacher improves health and appearance because the results of the study show that the weakness of the teacher's self-concept is in the appearance and significance of the body. So that the teacher needs to be given enlightenment related to how to maintain health and fitness through the implementation of joint gymnastics or conducting group discussions related to the dirt to maintain a prime body. (2) To face future competition and improve the quality of education it is deemed necessary to further increase the pedagogical competence of teachers, especially those related to planning and evaluation of learning.


2021 ◽  
pp. 103832
Author(s):  
Amin Ghadirian ◽  
Malene Hovgaard Vested ◽  
Stefan Carstensen ◽  
Erik Damgaard Christiensen ◽  
Henrik Bredmose

Author(s):  
So Young Joo ◽  
Seung Yeol Lee ◽  
Yoon Soo Cho ◽  
Sangho Yi ◽  
Cheong Hoon Seo

Abstract Hands are the part of the body that are most commonly involved in burns, and the main complications are finger joint contractures and nerve injuries. Hypertrophic scarring cannot be avoided despite early management of acute hand burn injuries, and some patients may need application of an exoskeleton robot to restore hand function. To do this, it is essential to individualize the customization of the robot for each patient. Three-dimensional (3D) technology, which is widely used in the field of implants, anatomical models, and tissue fabrication, makes this goal achievable. Therefore, this report is a study on the usefulness of an exoskeleton robot using 3D technology for patients who lost bilateral hand function due to burn injury. Our subject was a 45-year-old man with upper limb dysfunction of 560 days after a flame and chemical burn injury, with resultant impairment of manual physical abilities. After wearing an exoskeleton robot made using 3D printing technology, he could handle objects effectively and satisfactorily. This innovative approach provided considerable advantages in terms of customization of size and reduction in manufacturing time and costs, thereby showing great potential for use in patients with hand dysfunction after burn injury.


2021 ◽  
Vol 7 (1) ◽  
pp. 540-555
Author(s):  
Hayley L. Mickleburgh ◽  
Liv Nilsson Stutz ◽  
Harry Fokkens

Abstract The reconstruction of past mortuary rituals and practices increasingly incorporates analysis of the taphonomic history of the grave and buried body, using the framework provided by archaeothanatology. Archaeothanatological analysis relies on interpretation of the three-dimensional (3D) relationship of bones within the grave and traditionally depends on elaborate written descriptions and two-dimensional (2D) images of the remains during excavation to capture this spatial information. With the rapid development of inexpensive 3D tools, digital replicas (3D models) are now commonly available to preserve 3D information on human burials during excavation. A procedure developed using a test case to enhance archaeothanatological analysis and improve post-excavation analysis of human burials is described. Beyond preservation of static spatial information, 3D visualization techniques can be used in archaeothanatology to reconstruct the spatial displacement of bones over time, from deposition of the body to excavation of the skeletonized remains. The purpose of the procedure is to produce 3D simulations to visualize and test archaeothanatological hypotheses, thereby augmenting traditional archaeothanatological analysis. We illustrate our approach with the reconstruction of mortuary practices and burial taphonomy of a Bell Beaker burial from the site of Oostwoud-Tuithoorn, West-Frisia, the Netherlands. This case study was selected as the test case because of its relatively complete context information. The test case shows the potential for application of the procedure to older 2D field documentation, even when the amount and detail of documentation is less than ideal.


Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 774
Author(s):  
Max Langer ◽  
Thomas Speck ◽  
Olga Speck

Although both the petiole and lamina of foliage leaves have been thoroughly studied, the transition zone between them has often been overlooked. We aimed to identify objectively measurable morphological and anatomical criteria for a generally valid definition of the petiole–lamina transition zone by comparing foliage leaves with various body plans (monocotyledons vs. dicotyledons) and spatial arrangements of petiole and lamina (two-dimensional vs. three-dimensional configurations). Cross-sectional geometry and tissue arrangement of petioles and transition zones were investigated via serial thin-sections and µCT. The changes in the cross-sectional geometries from the petiole to the transition zone and the course of the vascular bundles in the transition zone apparently depend on the spatial arrangement, while the arrangement of the vascular bundles in the petioles depends on the body plan. We found an exponential acropetal increase in the cross-sectional area and axial and polar second moments of area to be the defining characteristic of all transition zones studied, regardless of body plan or spatial arrangement. In conclusion, a variety of terms is used in the literature for describing the region between petiole and lamina. We prefer the term “petiole–lamina transition zone” to underline its three-dimensional nature and the integration of multiple gradients of geometry, shape, and size.


2021 ◽  
pp. 152808372110326
Author(s):  
Queenie Fok ◽  
Joanne Yip ◽  
Kit-lun Yick ◽  
Sun-pui Ng

This study focuses on the fabrication of an anisotropic textile brace that exerts corrective forces based on the three-point pressure system to treat scoliosis, which is a medical condition that involves deformity of the spine. The design and material properties of the proposed anisotropic textile brace are discussed in detail here. A case series study with 5 scoliosis patients has been conducted to investigate the immediate in-brace effect and biomechanics of the proposed brace. Radiographic examination, three-dimensional scanning of the body and interface pressure measurements have been used to evaluate the immediate effect of the proposed brace on reducing the spinal curvature and asymmetry of the body contours and its biomechanics. The results show that the proposed brace on average reduces the spinal curvature by 11.7° and also increases the symmetry of the posterior trunk by 14.1% to 43.2%. The interface pressure at the corrective pad ranges from 6.0 to 24.4 kPa. The measured interface pressure shows that a sufficient amount of pressure has been exerted and a three-point pressure distribution is realized to reduce the spinal curvature. The obtained results indicate the effectiveness of this new approach which uses elastic textile material and a hinged artificial backbone to correct spinal deformity.


Author(s):  
Kuengmi Choi ◽  
Jungil Jun ◽  
Youngshil Ryoo ◽  
Sunmi Park

A bra use can reduce physiological and physical functions because of clothing pressure, which can be a problem for new senior women starting to lose physical function. The present study presents a bra top design development method for promoting new senior women’s physical activity by identifying problems related to bras’ effects on women’s health and minimizing clothing pressure. The analysis utilized the 3D scan data of 42 adult women (age range: 50s) from the 5th Size Korea Project. Bra top design elements were extracted based on new senior consumers’ needs. We developed an average wireframe reflecting the new senior’s physical characteristics, and a standard body form was developed through surface modeling. To produce a consumer-oriented bra with a body shaping effect and reduced clothing pressure that would not affect physical activities, a three-dimensional pattern was developed applying an optimal reduction rate of 80%. To verify the bra’s adequacy for the body form of new senior women, two market-available bras were selected and fit-compared to the developed product. The developed bra received higher expert appearance evaluation and 3D virtual clothing evaluation scores. This study is significant because by using virtual fitting technology, it provides foundational data to quantify the quality of fashion products.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shotaro Harada ◽  
Takao Imai ◽  
Yasumitsu Takimoto ◽  
Yumi Ohta ◽  
Takashi Sato ◽  
...  

AbstractIn the interaural direction, translational linear acceleration is loaded during lateral translational movement and gravitational acceleration is loaded during lateral tilting movement. These two types of acceleration induce eye movements via two kinds of otolith-ocular reflexes to compensate for movement and maintain clear vision: horizontal eye movement during translational movement, and torsional eye movement (torsion) during tilting movement. Although the two types of acceleration cannot be discriminated, the two otolith-ocular reflexes can distinguish them effectively. In the current study, we tested whether lateral-eyed mice exhibit both of these otolith-ocular reflexes. In addition, we propose a new index for assessing the otolith-ocular reflex in mice. During lateral translational movement, mice did not show appropriate horizontal eye movement, but exhibited unnecessary vertical torsion-like eye movement that compensated for the angle between the body axis and gravito-inertial acceleration (GIA; i.e., the sum of gravity and inertial force due to movement) by interpreting GIA as gravity. Using the new index (amplitude of vertical component of eye movement)/(angle between body axis and GIA), the mouse otolith-ocular reflex can be assessed without determining whether the otolith-ocular reflex is induced during translational movement or during tilting movement.


Author(s):  
João Pessoa ◽  
Nuno Fonseca ◽  
C. Guedes Soares

The paper presents an experimental and numerical investigation on the motions of a floating body of simple geometry subjected to harmonic and biharmonic waves. The experiments were carried out in three different water depths representing shallow and deep water. The body is axisymmetric about the vertical axis, like a vertical cylinder with a rounded bottom, and it is kept in place with a soft mooring system. The experimental results include the first order motion responses, the steady drift motion offset in regular waves and the slowly varying motions due to second order interaction in biharmonic waves. The hydrodynamic problem is solved numerically with a second order boundary element method. The results show a good agreement of the numerical calculations with the experiments.


Sign in / Sign up

Export Citation Format

Share Document