Analysis and Experimental Verification of SCC Characteristics of Typical Chinese Steels for Pressure Vessels Under Wet H2S Environment

Author(s):  
Xuedong Chen ◽  
Jialing Jiang ◽  
Tiecheng Yang ◽  
Jiushao Hu ◽  
Zhibin Ai ◽  
...  

In this paper, the estimation expression of critical concentration for hydrogen-induced cracking and estimation expression of critical stress intensity factor KISCC for hydrogen-induced delayed brittle fracture of the three Chinese steels for pressure vessels — 16MnR, 15MnVR and 07MnCrMoVR in Chinese standard GB 6654 are derived first according to SCC mechanism and in combination with fracture mechanics techniques, and verified by comparison with test values. The estimation expressions of diffusion-dominated crack plateau growth rate da/dt of these three materials are derived using Gerberich model based on the analysis of dynamic control mechanism of hydrogen-induced crack propagation under wet H2S environment and the estimated values are verified with the test results for WOL specimens. And the effect of concentration limit and concentration of the medium at normal temperature on the dynamic control process of crack propagation is also discussed.

2014 ◽  
Vol 628 ◽  
pp. 137-141
Author(s):  
Xian Lei Meng

Defects have great influence on the safe running of pressure vessels, and the safty assessment for in-service pressure vessels containing defects can realize safe and economical operation of presure vessles.Aiming at the fatigue assement of defect in steel pressure vessels,the fatigue assement method is studied and a primary program can be uesd to calculate fatigue crack propagation and life prediction is programed based on GB19624.The comparison between test and calculated results indicates that the method provided is suitable for fatigue assessment of defects.Combining the test results and cricical conditonds, the presient approach can provide a basis for the fatigue safety assessment and the reasonable overhaul cycle of in-service pressure vessels.


Author(s):  
João Ferreira ◽  
José A. F. O. Correia ◽  
Grzegorz Lesiuk ◽  
Sergio Blasón González ◽  
Maria Cristina R. Gonzalez ◽  
...  

Pressure vessels and piping are commonly subjected to plastic deformation during manufacturing or installation. This pre-deformation history, usually called pre-strain, may have a significant influence on the resistance against fatigue crack growth of the material. Several studies have been performed to investigate the pre-strain effects on the pure mode I fatigue crack propagation, but less on mixed-mode (I+II) fatigue crack propagation conditions. The present study aims at investigating the effect of tensile plastic pre-strain on fatigue crack growth behavior (da/dN vs. ΔK) of the P355NL1 pressure vessel steel. For that purpose, fatigue crack propagation tests were conducted on specimens with two distinct degrees of pre-strain: 0% and 6%, under mixed mode (I+II) conditions using CTS specimens. Moreover, for comparison purposes, CT specimens were tested under pure mode I conditions for pre-strains of 0% and 3%. Contrary to the majority of previous studies, that applied plastic deformation directly on the machined specimen, in this work the pre-straining operation was carried out prior to the machining of the specimens with the objective to minimize residual stress effects and distortions. Results revealed that, for the P355NL1 steel, the tensile pre-strain increased fatigue crack initiation angle and reduced fatigue crack growth rates in the Paris region for mixed mode conditions. The pre-straining procedure had a clear impact on the Paris law constants, increasing the coefficient and decreasing the exponent. In the low ΔK region, results indicate that pre-strain causes a decrease in ΔKth.


Author(s):  
Gomaa Zaki El-Far

This paper presents a robust instrument fault detection (IFD) scheme based on modified immune mechanism based evolutionary algorithm (MIMEA) that determines on line the optimal control actions, detects faults quickly in the control process, and reconfigures the controller structure. To ensure the capability of the proposed MIMEA, repeating cycles of crossover, mutation, and clonally selection are included through the sampling time. This increases the ability of the proposed algorithm to reach the global optimum performance and optimize the controller parameters through a few generations. A fault diagnosis logic system is created based on the proposed algorithm, nonlinear decision functions, and its derivatives with respect to time. Threshold limits are implied to improve the system dynamics and sensitivity of the IFD scheme to the faults. The proposed algorithm is able to reconfigure the control law safely in all the situations. The presented false alarm rates are also clearly indicated. To illustrate the performance of the proposed MIMEA, it is applied successfully to tune and optimize the controller parameters of the nonlinear nuclear power reactor such that a robust behavior is obtained. Simulation results show the effectiveness of the proposed IFD scheme based MIMEA in detecting and isolating the dynamic system faults.


2019 ◽  
Vol 9 (4) ◽  
pp. 805 ◽  
Author(s):  
Chung-Ho Huang ◽  
Chung-Hao Wu ◽  
Shu-Ken Lin ◽  
Tsong Yen

The effects of particle size of ground granulated blast furnace slag (GGBS) on the fracture energy, critical stress intensity, and strength of concrete are experimentally studied. Three fineness levels of GGBS of 4000, 5000, 6000 cm2/g were used. In addition to the control mixture without slag, two slag replacement levels of 20% and 40% by weight of the cementitious material were selected for preparing the concrete mixtures. The control mixture was designed to have a target compressive strength at 28 days of 62 MPa, while the water to cementitious material ratio was selected as 0.35 for all mixtures. Test results indicate that using finer slag in concrete may improve the filling effect and the reactivity of slag, resulting in a larger strength enhancement. The compressive strength of slag concrete was found to increase in conjunction with the fineness level of the slag presented in the mixture. Use of finer slag presents a beneficial effect on the fracture energy (GF) of concrete, even at an early age, and attains a higher increment of GF at later age (56 days). This implicates that the finer slag can have a unique effect on the enhancement of the fracture resistance of concrete. The test results of the critical stress intensity factor (KSIC) of the slag concretes have a similar tendency as that of the fracture energy, indicating that the finer slag may present an increase in the fracture toughness of concrete.


2017 ◽  
Vol 8 (4) ◽  
pp. 392-401 ◽  
Author(s):  
Hassan A.M. Mhamoud ◽  
Jia Yanmin

Purpose This study aims to focus on the resistance to elevated temperatures of up to 700ºC of high-performance concrete (HPC) compared to ordinary Portland concrete (OPC) with regards to mass loss and residual compressive and flexural strength. Design/methodology/approach Two mixtures were developed to test. The first mixture, OPC, was used as the control, and the second mixture was HPC. After 28 days under water (per Chinese standard), the samples were tested for compressive strength and residual strength. Findings The test results showed that at elevated temperatures of up to 500ºC, each mixture experienced mass loss. Below this temperature, the strength and the mass loss did not differ greatly. Originality/value When adding a 10 per cent silica fume, 25 per cent fly, 25 per cent slag to HPC, the compressive strength increased by 17 per cent and enhanced the residual compressive strength. A sharp decrease was observed in the residual flexural strength of HPC when compared to OPC after exposure to temperatures of 700ºC.


Author(s):  
Inge Lotsberg ◽  
Mamdouh M. Salama

Documentation of a long crack propagation phase is important for planning a sound inspection program for fatigue cracks in FPSOs. Test results of full scale FPSO weld details have shown that fatigue lives of FPSO details are governed by crack propagation and that crack propagation lives are several times that of the crack initiation life. However, some analysis packages predict a short crack propagation life until failure compared to the crack initiation life. These predictions are not consistent with full scale test results and thus cannot be relied on in developing inspection strategy. The reason for this inconsistency in analysis as compared with test results may be due to limitations in the analysis program packages. The paper presents analysis of fatigue testing data on several full scale FPSO weld details. The paper also discusses the effect of “shake-down’ that is not simulated in the full scale constant amplitude testing and would even lead to longer crack propagation lives under the actual long term loading on FPSOs.


Author(s):  
Zhiwei Chen ◽  
Tao Li ◽  
Guoyi Yang ◽  
Jinyang Zheng ◽  
Guide Deng

Abstract GB/T 34019-2017 “Ultra High Pressure Vessels” is the most important national standard that applies to pressure vessel which design pressure value is greater than or equal to 100MPa (14.5ksi). There is no standard for Ultra-high Pressure Vessel, Then this standard fills the gap in the standard system of pressure equipment in China. This paper mainly introduces the concept and main content of the new national standard, including the materials, design methods and nondestructive testing of ultra-high pressure vessel.


1969 ◽  
Vol 73 (700) ◽  
pp. 335-339 ◽  
Author(s):  
D. P. Rooke ◽  
N. J. F. Gunn ◽  
J. T. Ballett ◽  
F. J. Bradshaw

In recent years there has been an increasing need for data on the rates of fatigue crack propagation in alloys of interest to the aircraft industry. In general alloys in which cracks grow slowly, under given stress conditions, have an obvious advantage over those in which cracks grow faster; there is more time to detect a crack before failure. It is possible that, in the future, quantitative crack propagation data may be used to give better estimates of the safe life of a structure. There is, however, a need to rationalise the presentation of such data and to study the effect of such parameters as specimen geometry and stress level. Some experiments to investigate the effect of varying some of these parameters in one clad aluminium alloy, DTD 5070A are described. It is a summary of work contained in two RAE Technical Reports.


Sign in / Sign up

Export Citation Format

Share Document