scholarly journals Effects of Three Types of Massage on Serum Levels of Malondialdehyde, Superoxide Dismutase and Glutathione Peroxidase After One Session of Exhaustive Exercise in Female Futsal Players

2021 ◽  
Vol 10 (4) ◽  
pp. 328-339
Author(s):  
Bahare Heydari ◽  
◽  
Mohsen Ghofrani ◽  
Mohammad Ebrahim Bahram ◽  
◽  
...  

Objective: The production of reactive oxygen species in exercise causes oxidative stress which disturbs the balance of oxidants and antioxidants, causing destructive effects on cells. The present study aims to investigate the effect of three types of massage (Swedish, Russian, Thai) on serum levels of Malondialdehyde (MDA), Glutathione Peroxidase (GPX) and Superoxide Dismutase (SOD) following one session of exhaustive exercise. Methods: This quasi-experimental study was conducted on 48 female futsal players aged 17-22 years in Zahedan, Iran who were selected using a purposive sampling method, and randomly divided into four groups of Swedish massage (Long strokes with pressing and tapping using hands), Russian massage (Medium to high pressure), Thai massage (Pressure to certain parts of the body) and Control. The exercise program was based on Bruce protocol. Serum levels of MDA, GPX and SOD were measured by before and immediately after exercise and after massage. Data analysis was performed using repeated measures ANOVA, considering a significance level of P≤0.05. Results: In all three types of massage, there was a significant decrease in serum level of MDA (0.22±0.08), and a significant increase in GPX (1.84±0.46) and SOD (10.02±2.86) levels after exhaustive (P=0.001). No significant difference was observed in the control group. Conclusion: It seems that Russian, Thai, and Swedish types of massage can affect the serum levels of the MDA (as an oxidative stress marker) and the antioxidant enzymes of GPX and SOD during the post-exercise recovery period.

2014 ◽  
Vol 2014 ◽  
pp. 1-4 ◽  
Author(s):  
Ishita Gupta ◽  
Arvind Shetti ◽  
Vaishali Keluskar ◽  
Anjana Bagewadi

Background and Aim. Recurrent aphthous stomatitis (RAS) is a common oral mucosal disorder characterized by recurrent, painful oral aphthae. Despite extensive research, the exact etiology of RAS remains elusive. Recently oxidant-antioxidant imbalance of the body has been implicated in the pathogenesis of recurrent aphthous stomatitis. Thus, the aim of the study was to evaluate the enzymatic antioxidant levels in patients with recurrent aphthous stomatitis. Materials and Methods. The serum levels of superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT) were measured in 30 patients with recurrent aphthous stomatitis and compared to the control group, which included 30 healthy subjects. Student’s t-test was performed for statistical evaluation. Results. The mean levels of superoxide dismutase (130.2 ± 15.94 U/mL) and glutathione peroxidase (3527.93 ± 488.32 U/L) were found to be significantly lower in study group as compared to control group (211.9 ± 20.93 U/mL, 8860.93 ± 1105.31 U/L, resp.) (P=0.000) while level of catalase in study group was significantly higher when compared to control group (10981.00 ± 1018.07 U/mL versus 9764.00 ± 1621.19 U/mL) (P=0.000). Conclusion. Enzymatic antioxidant system is impaired in recurrent aphthous stomatitis patients and seems to play a crucial role in its pathogenesis.


2021 ◽  
Vol 9 ◽  
pp. 205031212199124
Author(s):  
Yahaya Muhammad ◽  
Yamuna Aminu Kani ◽  
Sani Iliya ◽  
Jafaru Bunza Muhammad ◽  
Abubakar Binji ◽  
...  

Introduction: The COVID-19 is a pandemic caused by SARS-CoV-2 which has infected over 74 million people, killing more than 1,600,000 million people around the world as of 17th December 2020. Accumulation of free radicals coupled by weakened antioxidant system leads to oxidative stress, which will further worsen respiratory diseases, COVID-19 inclusive. This study aimed to examine the levels of some antioxidants and oxidative stress markers in COVID-19 patients. Methods: This was a cross-sectional comparative study in which 50 COVID-19 symptomatic patients who were on admission at the COVID-19 isolation center in Jigawa, Northwestern Nigeria, were recruited. Twenty one (21) apparently healthy individuals were included as controls. Levels of antioxidant trace elements (Se, Zn, Mg, Cu and Cr), 8-isoprostaglandin F2 alpha and malondialdehyde in the plasma and erythrocytes activity of glutathione, glutathione peroxidase, superoxide dismutase and catalase were determined. Results: The plasma concentrations of vitamins A, C and E were significantly lower ( p < 0.001) in COVID-19 patients than controls. Activities of glutathione, glutathione peroxidase, catalase and superoxide dismutase were lower in COVID-19 subjects than controls ( p < 0.001). The concentrations of Se, Zn, Mg and Cu were significantly lower ( p < 0.001; p = 0.039; p < 0.001; and p < 0.001), respectively, in COVID-19 patients than controls, while chromium showed no significant difference ( p = 0.605). Oxidative stress marker, 8-isoprostaglandin F2 alpha, was significantly higher ( p = 0.049), while malondialdehyde was lower ( p < 0.001) in COVID-19 patients than controls. Conclusion: In conclusion, COVID-19 patients are prone to depleted levels of antioxidant substances due to their increase utilization in counterbalancing the negative effect of free radicals. Furthermore, COVID-19 infection with other comorbidities, such as malaria, hypertension and diabetes, are at higher risk of developing oxidative stress.


Author(s):  
L. K. Parkhomenko ◽  
◽  
L. A. Strashok ◽  
S. I. Turchina ◽  
G. V. Kosovtsova ◽  
...  

Recently, interest in the problem of free radical oxidation in biological membranes, which is directly related to both the normal functioning of cells and the occurrence, course and outcome of many pathological conditions, has increased again in clinical medicine. The aim was to determine the role and impact of antioxidant defense in boys with hypoandrogenism. The study involved 75 adolescents with hypoandrogenism aged 13–18 years, who underwent a complex of clinical and laboratory examinations. All patients were conducted complex of anthropometric research and determination of the degree of delayed puberty, laboratory and instrumental examination. Free radical oxidation was determined by the levels of malondialdehyde, conjugated dienes, carbonated proteins, superoxide dismutase and catalase in the serum, and restored glutathione and glutathione peroxidase in whole blood. Based on their determination, the coefficient of oxidative stress was calculated. Statistical processing of results was performed using parametric and nonparametric methods. The study of indicators of the free radical oxidation process found that adolescents with hypoandrogenism have multidirectional changes in the oxidation of proteins and lipids, namely: the level of conjugated dienes increases, the concentration of malondialdehyde remains at the level of the control group, and the level of carbonated proteins tends to decrease. As for the activity of antioxidant protection enzymes, a significant decrease in the level of glutathione peroxidase was detected, while the level of superoxide dismutase and catalase remained at the level of normative indicators. Oxidative stress accompanies and is one of the pathogenetic links in the formation or maintenance of the state of hypoandrogenism in boys. This requires the use of antioxidants, the complex of which must be selected individually.


CNS Spectrums ◽  
2017 ◽  
Vol 24 (03) ◽  
pp. 333-337 ◽  
Author(s):  
Maiara Zeni-Graiff ◽  
Adiel C. Rios ◽  
Pawan K. Maurya ◽  
Lucas B. Rizzo ◽  
Sumit Sethi ◽  
...  

IntroductionOxidative stress has been documented in chronic schizophrenia and in the first episode of psychosis, but there are very little data on oxidative stress prior to the disease onset.ObjectiveThis work aimed to compare serum levels of superoxide dismutase (SOD) and glutathione peroxidase (GPx) in young individuals at ultra-high risk (UHR) of developing psychosis with a comparison healthy control group (HC).MethodsThirteen UHR subjects and 29 age- and sex-matched healthy controls (HC) were enrolled in this study. Clinical assessment included the Comprehensive Assessment of At-Risk Mental States (CAARMS), the Semi-Structured Clinical Interview for DSM-IV Axis-I (SCID-I) or the Kiddie-SADS-Present and Lifetime Version (K-SADS-PL), and the Global Assessment of Functioning (GAF) scale. Activities of SOD and GPx were measured in serum by the spectrophotometric method using enzyme-linked immunosorbent assay kits.ResultsAfter adjusting for age and years of education, there was a significant lower activity of SOD and lower GPX activity in the UHR group compared to the healthy control group (rate ratio [RR]=0.330, 95% CI 0.187; 0.584, p&lt;0.001 and RR=0.509, 95% CI 0.323; 0.803, p=0.004, respectively). There were also positive correlations between GAF functioning scores and GPx and SOD activities.ConclusionOur results suggest that oxidative imbalances could be present prior to the onset of full-blown psychosis, including in at-risk stages. Future studies should replicate and expand these results.


2020 ◽  
Vol 20 (1) ◽  
pp. 247
Author(s):  
Nur Insani ◽  
H.M.T Kamaluddin ◽  
Swanny Swanny

Glutathione (GSH) transferase deficiency due to paracetamol exposure causes further oxidative stress to liver necrosis. To reduce oxidative stress that can cause damage to the liver of the body requires antioxidants. One plant to treat liver disease is the kelor leaf (because it has an active flavonoid material also has antioxidant activity). This study was conducted to determine the difference of glutathione hepar levels of male white rat induced paracetamol toxic dose by giving kelor leaf extract. The type of research is experimental laboratory in vivo with rancagan randomized post test only control group design. With the stages as follows 1.Leaf Extract Kelor with Ethanol 96%, 2.Perpeteration of experimental animals, 3.Treatment of experimental animals by giving extract of 3-dose of kelor leaf that is KP I 250 mg / 200 gr BB rat, KP II 500 mg / 200 gr BB rat, KP III 1000 mg / 200 gr BB rat  for 14 days combined with paracetamol dose 2 gr / 200 gr BB rat compared with the negative control group (group given only paracetamol dose 2 gr / 200 gr BB rat) and control group positif only fed regular feed for 14 days). The result showed that there was a significant difference mean of GSH levels between all treatment groups obtained p = 0,000 (p <α) p values smaller than 0.05. There was the highest increase of GSH in treatment group II (142,7525 μmol / mg) and lowest dose of GSH in positive control group (57,1812 μmol / mg), dose paracetamol toxic dosage and kelor leaf extract 500 mg / gr BB rat can increase GSH hepar p = 0,000 (p <α) p less than 0 , 05. The conclusion of the test results showed that giving of kelor leaf extract at dose of treatment group II can increase GSH hepar level significantly


Author(s):  
Mina Rasouli Mojez ◽  
Abbas Ali Gaeini ◽  
Siroos Choobineh ◽  
Mohsen Sheykhlouvand

Background: The present study determined whether 4 weeks of moderate aerobic exercise improves antioxidant capacity on the brain of rats against oxidative stress caused by radiofrequency electromagnetic radiation emitted from cell phones. Methods: Responses of malondialdehyde, catalase, glutathione peroxidase, and superoxide dismutase, as well as the number of hippocampal dead cells, were examined. Male Wistar rats (10–12 wk old) were randomly assigned to 1 of 4 groups (N = 8): (1) moderate aerobic exercise (EXE) (2 × 15–30 min at 1215 m/min speed with 5 min of active recovery between sets), (2) exposure to 900/1800 MHz radiofrequency electromagnetic waves 3 hours per day (RAD), (3) EXE + RAD, and (4) exposure to an experimental phone without battery. Results: Following the exposure, the number of the hippocampal dead cells was significantly higher in group RAD compared with groups EXE, EXE + RAD, and control group. Malondialdehyde concentration in group RAD was significantly higher than that of groups EXE, EXE + RAD, and control group. Also, the activity of catalase, glutathione peroxidase, and superoxide dismutase in groups EXE, EXE + RAD, and control group was significantly higher compared with those of the exposure group. Conclusion: This study demonstrated that moderate aerobic exercise enhances hippocampal antioxidant capacity against oxidative challenge in the form of radiofrequency electromagnetic waves.


2018 ◽  
Vol 10 (4) ◽  
pp. 460-465
Author(s):  
Patrick E. ABA ◽  
Ifeanyi E. UZOCHUKWU ◽  
Nelson I. OSSAI ◽  
Ifeanyi G. EKE

Sodium propanoate is in the list of approved feed preservatives. However, there is dearth of information on its biological effects on the C. gariepinus. The present study investigated the effect of sodium propanoate-preserved feed on the hepatic histomorphometric changes, oxidative stress and inflammatory parameters of C. gariepinus juveniles. One hundred juveniles of mixed sexes, assigned into 5 groups of 20 fish per group, with each group consisting of 2 replicates of 10 fish, were used for the investigation. Group A juveniles were fed basal diet, while groups B-E received basal diet incorporated with sodium propanoate at the rate of 25, 50, 75 and 100 g/15 kg of feed respectively. Treatments were done two times daily for 8 weeks. Samples (sera and liver) were collected on the last day for evaluation of a few biochemical parameters (malondialdehyde values, catalase activity, C-reactive protein levels) and histomorphometric alterations in the liver. Results indicated that fish in groups D and E had higher catalase activities, lower serum levels of C-reactive proteins and an intact hepatic histomorphormetry when compared with the control group. There was no significant difference in the plasma malondialdehyde values in all the groups. It was concluded that preservation of fish feed with sodium propanoates improved antioxidant status of C. gariepinus and protected liver histology.


Author(s):  
Fatih Battal ◽  
Mustafa Tekin ◽  
Hakan Aylanç ◽  
Şule Yıldırım ◽  
Hakan Türkön ◽  
...  

Abstract Background: It is known that the biochemical marker linked to tissue ischemia, ischemia-modified albumin (IMA), is related to oxidative stress. Cigarette smoking is a situation with increased oxidative stress causing cell damage and it is thought that many of the negative effects linked to smoking may occur after the biological material in the body is exposed to oxidative damage. This study aimed to identify variability in serum IMA levels in adolescents who smoke. Methods: This case-control study comprised 60 adolescents without any chronic disease. The smoking group was 30 adolescents between the ages of 14 and 17 years who smoked, while the control group was 30 healthy adolescents who did not smoke. Blood samples were collected from all subjects and serum IMA levels and serum nicotine metabolites were determined. Results: The serum IMA levels in the adolescents who smoked were 0.452±0.094 absorbance unit (ABSU), while the control group had ASBU levels of 0.427±0.054. There was no significant difference between the groups in terms of serum IMA levels (p=0.210). There was a significant difference between the control and smoking groups in terms of serum nicotine metabolite levels (p<0.001). Conclusions: Among adolescents who smoke, serum IMA levels may not be a good marker for oxidative stress.


2021 ◽  
Vol 19 (12) ◽  
pp. 2591-2595
Author(s):  
Feng Lu ◽  
Bingxin Liu ◽  
Hui Zhao

Purpose: To study the influence of N-acetylcysteine (NAC) on systemic lupus  erythematosus (SLE) mice, and the mechanism(s) involved. Methods: Fourteen MRL/lpr SLE mice aged 5 weeks (mean weight = 20.35 ± 2.12 g) were divided into two 7-mouse groups: SLE (control) and treatment groups. The control group comprised healthy female SPF-grade C57BL/6 mice (n = 7). The treatment group mice received intraperitoneal injection of NAC at a dose of 250 mg/kg daily for 8 weeks. The serum levels of malondialdehyde (MDA) and nitric oxide (NO), and activities of glutathione peroxidase (GPx) and superoxide dismutase (SOD), were assayed using standard methods. The level of urine protein and activity of anti-double stranded (ds) DNA antibody were determined using their respective enzyme-linked assay (ELISA) kits. Results: The spleens of mice in SLE mice were significantly enlarged, relative to control mice, but they were reduced significantly by NAC (p < 0.05). N-Acetylcysteine (NAC) also significantly reduced the serum levels of MDA and NO in SLE mice, but significantly  increased the serum activities of superoxide dismutase and GPx. Moreover, urine protein concentration and activity of anti-dsDNA antibody in SLE mice significantly increased, but reduced significantly by NAC treatment (p < 0.05). Conclusion: These results suggest that NAC effectively alleviates SLE in mice via regulation of oxidative stress. Thus, NAC has the potentials for development into a therapy for the management of SLE. Keywords: Anti-dsDNA antibodies, Antioxidant enzymes, N-acetylcysteine, Oxidative stress, Systemic lupus erythematosus


2020 ◽  
Vol 11 (3) ◽  
pp. 384-391
Author(s):  
A. V. Semenko ◽  
Y. V. Murdasov ◽  
S. V. Kirichenko ◽  
V. I. Zhyliuk ◽  
G. A. Ushakovа

Diabetes mellitus is characterized by numerous pathological changes in the body. Under conditions of diabetes, hyperglycemic intoxication of the organism rapidly develops, which in turn leads to an increase of oxidative stress with subsequent disturbance of the anatomical and functional integrity of the components of organisms. Today, the search for the substances that would contribute to the multi-vectoral effect on the negative consequences of diabetes is actively being pursued. Melatonin is one of such substances. In this work, we studied the effect of melatonin on oxidative stress markers (oxidized products content, activities of superoxide dismutase and catalase), the concentration of metabolism end products (creatinine and urea), main ions concentration (potassium and chlorine), and protein content (total protein and electropherogram in polyacrylamide gel), enzymatic activity of gamma-glutamyltrasferase in the cytosolic fraction of rat kidneys under condition of type 2 diabetes mellitus (EDM2). Experimental studies were performed on 18 white adult Wistar rats divided into three groups (control, group with EDM2 and group with EDM2, which were treated with melatonin). The increase of concentration of oxidized products, the activity of catalase and gamma-glutamyltrasferase, creatinine, urea, K+ and Cl– and the decrease of concentration of superoxide dismutase in the rats’ kidneys was noted after development of EDM2. The electrophoretic proteinogram of the cytosolic proteins obtained from the rats’ kidneys showed an increase of content of high-molecular-weight and a decrease of low-molecular-weight proteins. Administration of melatonin in a dose of 10 mg/kg of body weight for 7 days after development of EDM2 restored the studied parameters almost to the control group values. Therefore, the influence of melatonin can prevent chronic development of oxidative stress in kidneys under hyperglycemic intoxication, and lead to normalization of kidney function and the restoration of homeostasis.


Sign in / Sign up

Export Citation Format

Share Document