scholarly journals Growth of pancreatic cancers with hemizygous chromosomal 17p loss of MYBBP1A can be preferentially targeted by PARP inhibitors

2020 ◽  
Vol 6 (49) ◽  
pp. eabc4517
Author(s):  
Antony Hsieh ◽  
Jason R. Pitarresi ◽  
Jonathan Lerner ◽  
Greg Donahue ◽  
David Hsiehchen ◽  
...  

Here, we selectively target pancreatic ductal adenocarcinoma (PDAC) cells harboring a hemizygous gene essential for cell growth. MYB binding protein 1A (MYBBP1A), encoding a chromatin-bound protein, is hemizygous in most of the PDAC due to a chromosome 17p deletion that also spans TP53. We find that hemizygous MYBBP1A loss in isogenic PDAC cells promotes tumorigenesis but, paradoxically, homozygous MYBBP1A loss is associated with impaired cell growth and decreased tumorigenesis. Poly–adenosine 5′-diphosphate–ribose polymerase 1 (PARP1) interacts with MYBBP1A and displaces it from chromatin. Small molecules, such as olaparib, that trap PARP1 to chromatin are able to evict the minimal pool of chromatin-bound MYBBP1A protein in MYBBP1A hemizygous cells and impair cell growth, greater than its impact on wild-type cells. Our findings reveal how a cell essential gene with one allele lost in cancer cells can be preferentially susceptible to a specific molecular therapy, when compared to wild-type cells.

2019 ◽  
Vol 316 (5) ◽  
pp. G632-G640 ◽  
Author(s):  
Kai Wang ◽  
Graham S. Baldwin ◽  
Mehrdad Nikfarjam ◽  
Hong He

Pancreatic ductal adenocarcinoma (PDA) is one of the most lethal malignancies worldwide. All-trans retinoic acid (ATRA) has been used as an antistromal agent in PDA, and its antitumor effect has also been reported in various kinds of cancer, including PDA. Inhibition of p21-activated kinases (PAKs) is associated with decreased tumor growth and increased gemcitabine sensitivity. The aim of this study was to evaluate the inhibitory effects of ATRA alone and in combination with gemcitabine on cell growth and migration of wild-type and gemcitabine-resistant PDA cells and the potential mechanism(s) involved. Human (MiaPaCa-2) and murine (TB33117) PDA cell lines were incubated in increasing concentrations of gemcitabine to establish resistant clones. Cell growth, clonogenicity, and migration/invasion were determined using a sulforhodamine B assay, a colony formation assay, and a Boyden chamber assay, respectively. Protein expression was measured by Western blotting. ATRA reduced cell proliferation, colony formation, and migration/invasion in both wild-type and gemcitabine-resistant cell lines. PAK1 expression was significantly increased in resistant cells. Cells treated with ATRA showed decreased expression of PAK1, PAK2, PAK4, and α-smooth muscle actin. The combination of ATRA and gemcitabine synergistically reduced cell growth in both wild-type and gemcitabine-resistant cell lines. Depletion of PAK1 enhanced ATRA sensitivity in MiaPaCa-2 cells. In conclusion, the antitumor effects of ATRA and its synergism with gemcitabine are associated with downregulation of PAKs.NEW & NOTEWORTHY The inhibitory effect of all-trans retinoic acid (ATRA) on cell proliferation, colony formation, and migration/invasion was associated with downregulation of p21-activated kinases (PAKs), and depletion of PAK1 enhanced ATRA sensitivity in MiaPaCa-2 cells. The combination of ATRA and gemcitabine synergistically reduced cell growth in both wild-type and gemcitabine-resistant pancreatic ductal adenocarcinoma cells. As an important prognostic marker, α-smooth muscle actin also can be downregulated by ATRA in pancreatic ductal adenocarcinoma cells.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 2173-2173
Author(s):  
Anna Kalota ◽  
Alan M. Gewirtz

Abstract The abl tyrosine kinase inhibitor (TKI) imatinib mesylate has revolutionized treatment of Chronic Myelogenous Leukemia (CML). Nonetheless, for the small percentage of chronic phase patients in whom resistance to imatinib develops, and for patients in accelerated phase/blast crisis, disease management is problematic. Second generation TKI may address the resistance issue, but serious cardiotoxicity might be a concern for all TKIs. We are therefore investigating other candidates for rationally directed CML therapy. Herein we report that targeting tubulin with computationally designed small molecules may prove useful for the treatment of TKI resistant CML cells. Tubulin inhibitors were obtained from Locus Pharmaceuticals, Blue Bell, PA. They were designed using a method that computes virtual inhibitor molecule binding efficiency after integrating free energy calculations from all chemically possible combinations of molecule fragment poses. Molecules that perform well in in silico screens are then synthesized for biological testing. We evaluated 3 such molecules (LP-261, LOC-011294, and LOC-011423), and 2 control compounds (LOC-007708, LP-590), on K562 human leukemia cells, murine BaF3 cells expressing wild type bcr-abl, or the Y253F, T315I, E255K, H296P and M351T kinase domain mutations (gift from B. Druker, Portland, Oregon), and on consenting donors of normal, and CML, bone marrow cells. LP-261, LOC-011294, and LOC-011423 all had significant activity in K562 cells and BaF3 cells expressing wild type bcr-abl. Inhibition of cell growth in these lines was ~90% when employed at concentrations of > 100nM. More importantly in BaF3 cells expressing each of the mutant abl kinases, including T315I, growth inhibition was also ~90%. Moreover, LP-261, and LOC-011294 were also highly effective against primary cells obtained from patients with chronic phase and blast crisis CML. Treatment of primary CML cells with LP-261 resulted in >80% inhibition of proliferation in all five CML patient samples when compared to control cells. LOC-011294 inhibited cell proliferation by >80% in 3 out of 5 primary patient samples, and by ~50% in one other. Additional testing revealed that LP-261 was not a substrate for the p-glycoprotein multi-drug resistance porter, and that it is orally bioavailable. Neither LOC-007708, (a selective inhibitor of p38 kinase), nor LP-590 (an inhibitor of p38, Flt-3 and tie-2 kinases) inhibited proliferation of the cells expressing mutated bcr-abl. Since these kinases are not thought to influence bcr-abl driven cell growth, these results were expected. In contrast, MOLM14 cells, which overexpress Flt-3, were profoundly inhibited by LP-590. Disease specificity is suggested by the fact that none of these compounds had any effect on growth of acute lymphoid leukemia (ALL) patient samples. To be clinically useful, it was important to demonstrate that normal CD34+ were less sensitive to the growth inhibitory effects of these compounds. For this purpose, normal CD34+ cells were exposed to LP-261, LOC-011294, and LOC-011423 for 24 hours at concentrations shown to inhibit CML cell growth and then plated in methylcellulose with cytokines. Under these conditions, no significant inhibition of CFU-GM, CFU-E, or BFU-E in comparison to control cells was shown. These results suggests that rationally designed anti-tubulin small molecules, alone, or in combination with other active agents, may prove quite useful for treating kinase inhibitor resistant, as well as de novo, CML. This hypothesis may be tested in the near future as an IND has been filed for LP-261.


Genetics ◽  
2000 ◽  
Vol 154 (4) ◽  
pp. 1561-1576
Author(s):  
Neil Macpherson ◽  
Vivien Measday ◽  
Lynda Moore ◽  
Brenda Andrews

Abstract In Saccharomyces cerevisiae, the Swi6 protein is a component of two transcription factors, SBF and MBF, that promote expression of a large group of genes in the late G1 phase of the cell cycle. Although SBF is required for cell viability, SWI6 is not an essential gene. We performed a synthetic lethal screen to identify genes required for viability in the absence of SWI6 and identified 10 complementation groups of swi6-dependent lethal mutants, designated SLM1 through SLM10. We were most interested in mutants showing a cell cycle arrest phenotype; both slm7-1 swi6Δ and slm8-1 swi6Δ double mutants accumulated as large, unbudded cells with increased 1N DNA content and showed a temperature-sensitive growth arrest in the presence of Swi6. Analysis of the transcript levels of cell cycle-regulated genes in slm7-1 SWI6 mutant strains at the permissive temperature revealed defects in regulation of a subset of cyclin-encoding genes. Complementation and allelism tests showed that SLM7 is allelic with the TAF17 gene, which encodes a histone-like component of the general transcription factor TFIID and the SAGA histone acetyltransferase complex. Sequencing showed that the slm7-1 allele of TAF17 is predicted to encode a version of Taf17 that is truncated within a highly conserved region. The cell cycle and transcriptional defects caused by taf17slm7-1 are consistent with the role of TAFIIs as modulators of transcriptional activation and may reflect a role for TAF17 in regulating activation by SBF and MBF.


Cancers ◽  
2021 ◽  
Vol 13 (13) ◽  
pp. 3344
Author(s):  
Ana Sara Gomes ◽  
Helena Ramos ◽  
Alberto Inga ◽  
Emília Sousa ◽  
Lucília Saraiva

p53 is a transcription factor with a pivotal role in cell homeostasis and fate. Its impairment is a major event in tumor onset and development. In fact, about half of human cancers bear TP53 mutations that not only halt the normal function of p53, but also may acquire oncogenic gain of functions that favor tumorigenesis. Although considered undruggable for a long time, evidence has proven the capability of many compounds to restore a wild-type (wt)-like function to mutant p53 (mutp53). However, they have not reached the clinic to date. Structural studies have strongly contributed to the knowledge about p53 structure, stability, dynamics, function, and regulation. Importantly, they have afforded relevant insights into wt and mutp53 pharmacology at molecular levels, fostering the design and development of p53-targeted anticancer therapies. Herein, we provide an integrated view of mutp53 regulation, particularly focusing on mutp53 structural traits and on targeting agents capable of its reactivation, including their biological, biochemical and biophysical features. With this, we expect to pave the way for the development of improved small molecules that may advance precision cancer therapy by targeting p53.


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1637
Author(s):  
Solida Long ◽  
Joana B. Loureiro ◽  
Carla Carvalho ◽  
Luís Gales ◽  
Lucília Saraiva ◽  
...  

The tumor suppressor p53 is inactivated by mutation in approximately 50% of human cancers. Small molecules that bind and stabilize those mutants may represent effective anticancer drugs. Herein, we report the tumor cell growth inhibitory activity of carbazole alkaloids and amino derivatives, as well as their potential activation of p53. Twelve aminocarbazole alkaloids were semi-synthesized from heptaphylline (1), 7-methoxy heptaphylline (2), and 7-methoxymukonal (3), isolated from Clausena harmandiana, using a reductive amination protocol. Naturally-occurring carbazoles 1–3 and their amino derivatives were evaluated for their potential effect on wild-type and mutant p53 activity using a yeast screening assay and on human tumor cell lines. Naturally-occurring carbazoles 1–3 showed the most potent growth inhibitory effects on wild-type p53-expressing cells, being heptaphylline (1) the most promising in all the investigated cell lines. However, compound 1 also showed growth inhibition against non-tumor cells. Conversely, semi-synthetic aminocarbazole 1d showed an interesting growth inhibitory activity in tumor cells expressing both wild-type and mutant p53, exhibiting low growth inhibition on non-tumor cells. The yeast assay showed a potential reactivation of mutant p53 by heptaphylline derivatives, including compound 1d. The results obtained indicate that carbazole alkaloids may represent a promising starting point to search for new mutp53-reactivating agents with promising applications in cancer therapy.


Nature ◽  
1972 ◽  
Vol 235 (5338) ◽  
pp. 366-366
Keyword(s):  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Ritu Pandey ◽  
Muhan Zhou ◽  
Shariful Islam ◽  
Baowei Chen ◽  
Natalie K Barker ◽  
...  

AbstractWe investigated biomarker CEACAM6, a highly abundant cell surface adhesion receptor that modulates the extracellular matrix (ECM) in pancreatic ductal adenocarcinoma (PDA). The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) RNA-Seq data from PDA patients were analyzed for CEACAM6 expression and evaluated for overall survival, association, enrichment and correlations. A CRISPR/Cas9 Knockout (KO) of CEACAM6 in PDA cell line for quantitative proteomics, mitochondrial bioenergetics and tumor growth in mice were conducted. We found CEACAM6 is over-expressed in primary and metastatic basal and classical PDA subtypes. Highest levels are in classical activated stroma subtype. CEACAM6 over-expression is universally a poor prognostic marker in KRAS mutant and wild type PDA. High CEACAM6 expression is associated with low cytolytic T-cell activity in both basal and classical PDA subtypes and correlates with low levels of T-REG markers. In HPAF-II cells knockout of CEACAM6 alters ECM-cell adhesion, catabolism, immune environment, transmembrane transport and autophagy. CEACAM6 loss increases mitochondrial basal and maximal respiratory capacity. HPAF-II CEACAM6−/− cells are growth suppressed by >65% vs. wild type in mice bearing tumors. CEACAM6, a key regulator affects several hallmarks of PDA including the fibrotic reaction, immune regulation, energy metabolism and is a novel therapeutic target in PDA.


2017 ◽  
Vol 313 (5) ◽  
pp. G524-G536 ◽  
Author(s):  
Sandrina Maertin ◽  
Jason M. Elperin ◽  
Ethan Lotshaw ◽  
Matthias Sendler ◽  
Steven D. Speakman ◽  
...  

Pancreatic ductal adenocarcinoma (PDAC) displays extensive and poorly vascularized desmoplastic stromal reaction, and therefore, pancreatic cancer (PaCa) cells are confronted with nutrient deprivation and hypoxia. Here, we investigate the roles of autophagy and metabolism in PaCa cell adaptation to environmental stresses, amino acid (AA) depletion, and hypoxia. It is known that in healthy cells, basal autophagy is at a low level, but it is greatly activated by environmental stresses. By contrast, we find that in PaCa cells, basal autophagic activity is relatively high, but AA depletion and hypoxia activate autophagy only weakly or not at all, due to their failure to inhibit mechanistic target of rapamycin. Basal, but not stress-induced, autophagy is necessary for PaCa cell proliferation, and AA supply is even more critical to maintain PaCa cell growth. To gain insight into the underlying mechanisms, we analyzed the effects of autophagy inhibition and AA depletion on PaCa cell metabolism. PaCa cells display mixed oxidative/glycolytic metabolism, with oxidative phosphorylation (OXPHOS) predominant. Both autophagy inhibition and AA depletion dramatically decreased OXPHOS; furthermore, pharmacologic inhibitors of OXPHOS suppressed PaCa cell proliferation. The data indicate that the maintenance of OXPHOS is a key mechanism through which autophagy and AA supply support PaCa cell growth. We find that the expression of oncogenic activation mutation in GTPase Kras markedly promotes basal autophagy and stimulates OXPHOS through an autophagy-dependent mechanism. The results suggest that approaches aimed to suppress OXPHOS, particularly through limiting AA supply, could be beneficial in treating PDAC. NEW & NOTEWORTHY Cancer cells in the highly desmoplastic pancreatic ductal adenocarcinoma confront nutrient [i.e., amino acids (AA)] deprivation and hypoxia, but how pancreatic cancer (PaCa) cells adapt to these conditions is poorly understood. This study provides evidence that the maintenance of mitochondrial function, in particular, oxidative phosphorylation (OXPHOS), is a key mechanism that supports PaCa cell growth, both in normal conditions and under the environmental stresses. OXPHOS in PaCa cells critically depends on autophagy and AA supply. Furthermore, the oncogenic activation mutation in GTPase Kras upregulates OXPHOS through an autophagy-dependent mechanism.


2004 ◽  
Vol 72 (11) ◽  
pp. 6589-6596 ◽  
Author(s):  
Ricky L. Ulrich ◽  
David DeShazer ◽  
Harry B. Hines ◽  
Jeffrey A. Jeddeloh

ABSTRACT Numerous gram-negative bacterial pathogens regulate virulence factor expression by using a cell density mechanism termed quorum sensing (QS). An in silico analysis of the Burkholderia mallei ATCC 23344 genome revealed that it encodes at least two luxI and four luxR homologues. Using mass spectrometry, we showed that wild-type B. mallei produces the signaling molecules N-octanoyl-homoserine lactone and N-decanoyl-homoserine lactone. To determine if QS is involved in the virulence of B. mallei, we generated mutations in each putative luxIR homologue and tested the pathogenicities of the derivative strains in aerosol BALB/c mouse and intraperitoneal hamster models. Disruption of the B. mallei QS alleles, especially in RJ16 (bmaII) and RJ17 (bmaI3), which are luxI mutants, significantly reduced virulence, as indicated by the survival of mice who were aerosolized with 104 CFU (10 50% lethal doses [LD50s]). For the B. mallei transcriptional regulator mutants (luxR homologues), mutation of the bmaR5 allele resulted in the most pronounced decrease in virulence, with 100% of the challenged animals surviving a dose of 10 LD50s. Using a Syrian hamster intraperitoneal model of infection, we determined the LD50s for wild-type B. mallei and each QS mutant. An increase in the relative LD50 was found for RJ16 (bmaI1) (>967 CFU), RJ17 (bmaI3) (115 CFU), and RJ20 (bmaR5) (151 CFU) compared to wild-type B. mallei (<13 CFU). These findings demonstrate that B. mallei carries multiple luxIR homologues that either directly or indirectly regulate the biosynthesis of an essential virulence factor(s) that contributes to the pathogenicity of B. mallei in vivo.


Sign in / Sign up

Export Citation Format

Share Document