scholarly journals Laser vibrational excitation of radicals to prevent crystallinity degradation caused by boron doping in diamond

2021 ◽  
Vol 7 (4) ◽  
pp. eabc7547
Author(s):  
L. Fan ◽  
L. Constantin ◽  
Z. P. Wu ◽  
K. A. McElveen ◽  
X. G. Chen ◽  
...  

Pursuing high-level doping without deteriorating crystallinity is prohibitively difficult but scientifically crucial to unleashing the hidden power of materials. This study demonstrates an effective route for maintaining lattice integrity during the combustion chemical vapor deposition of highly conductive boron-doped diamonds (BDDs) through laser vibrational excitation of a growth-critical radical, boron dihydride (BH2). The improved diamond crystallinity is attributed to a laser-enabled, thermal nonequilibrium suppression of the relative abundance of boron hydrides (BH), whose excessive presence induces boron segregation and disturbs the crystallization. The BDDs show a boron concentration of 4.3 × 1021 cm−3, a film resistivity of 28.1 milliohm·cm, and hole mobility of 55.6 cm2 V−1 s−1, outperforming a commercial BDD. The highly conductive and crystalline BDDs exhibit enhanced efficiency in sensing glucose, confirming the advantages of laser excitation in producing high-performance BDD sensors. Regaining crystallinity with laser excitation in doping process could remove the long-standing bottlenecks in semiconductor industry.

2020 ◽  
Author(s):  
James McDonagh ◽  
William Swope ◽  
Richard L. Anderson ◽  
Michael Johnston ◽  
David J. Bray

Digitization offers significant opportunities for the formulated product industry to transform the way it works and develop new methods of business. R&D is one area of operation that is challenging to take advantage of these technologies due to its high level of domain specialisation and creativity but the benefits could be significant. Recent developments of base level technologies such as artificial intelligence (AI)/machine learning (ML), robotics and high performance computing (HPC), to name a few, present disruptive and transformative technologies which could offer new insights, discovery methods and enhanced chemical control when combined in a digital ecosystem of connectivity, distributive services and decentralisation. At the fundamental level, research in these technologies has shown that new physical and chemical insights can be gained, which in turn can augment experimental R&D approaches through physics-based chemical simulation, data driven models and hybrid approaches. In all of these cases, high quality data is required to build and validate models in addition to the skills and expertise to exploit such methods. In this article we give an overview of some of the digital technology demonstrators we have developed for formulated product R&D. We discuss the challenges in building and deploying these demonstrators.<br>


2020 ◽  
Vol 12 (2) ◽  
pp. 19-50 ◽  
Author(s):  
Muhammad Siddique ◽  
Shandana Shoaib ◽  
Zahoor Jan

A key aspect of work processes in service sector firms is the interconnection between tasks and performance. Relational coordination can play an important role in addressing the issues of coordinating organizational activities due to high level of interdependence complexity in service sector firms. Research has primarily supported the aspect that well devised high performance work systems (HPWS) can intensify organizational performance. There is a growing debate, however, with regard to understanding the “mechanism” linking HPWS and performance outcomes. Using relational coordination theory, this study examines a model that examine the effects of subsets of HPWS, such as motivation, skills and opportunity enhancing HR practices on relational coordination among employees working in reciprocal interdependent job settings. Data were gathered from multiple sources including managers and employees at individual, functional and unit levels to know their understanding in relation to HPWS and relational coordination (RC) in 218 bank branches in Pakistan. Data analysis via structural equation modelling, results suggest that HPWS predicted RC among officers at the unit level. The findings of the study have contributions to both, theory and practice.


Processes ◽  
2020 ◽  
Vol 8 (6) ◽  
pp. 666 ◽  
Author(s):  
Nikolay Ivanovich Polushin ◽  
Alexander Ivanovich Laptev ◽  
Boris Vladimirovich Spitsyn ◽  
Alexander Evgenievich Alexenko ◽  
Alexander Mihailovich Polyansky ◽  
...  

Boron-doped diamond is a promising semiconductor material that can be used as a sensor and in power electronics. Currently, researchers have obtained thin boron-doped diamond layers due to low film growth rates (2–10 μm/h), with polycrystalline diamond growth on the front and edge planes of thicker crystals, inhomogeneous properties in the growing crystal’s volume, and the presence of different structural defects. One way to reduce structural imperfection is the specification of optimal synthesis conditions, as well as surface etching, to remove diamond polycrystals. Etching can be carried out using various gas compositions, but this operation is conducted with the interruption of the diamond deposition process; therefore, inhomogeneity in the diamond structure appears. The solution to this problem is etching in the process of diamond deposition. To realize this in the present work, we used triethyl borate as a boron-containing substance in the process of boron-doped diamond chemical vapor deposition. Due to the oxygen atoms in the triethyl borate molecule, it became possible to carry out an experiment on simultaneous boron-doped diamond deposition and growing surface etching without the requirement of process interruption for other operations. As a result of the experiments, we obtain highly boron-doped monocrystalline diamond layers with a thickness of about 8 μm and a boron content of 2.9%. Defects in the form of diamond polycrystals were not detected on the surface and around the periphery of the plate.


Crystals ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 237
Author(s):  
M. Abul Hossion ◽  
B. M. Arora

Boron-doped polycrystalline silicon film was synthesized using hot wire chemical vapor deposition technique for possible application in photonics devices. To investigate the effect of substrate, we considered Si/SiO2, glass/ITO/TiO2, Al2O3, and nickel tungsten alloy strip for the growth of polycrystalline silicon films. Scanning electron microscopy, optical reflectance, optical transmittance, X-ray diffraction, and I-V measurements were used to characterize the silicon films. The resistivity of the film was 1.3 × 10−2 Ω-cm for the polycrystalline silicon film, which was suitable for using as a window layer in a solar cell. These films have potential uses in making photodiode and photosensing devices.


Author(s):  
zhikun zhang ◽  
lianlian xia ◽  
Lizhao Liu ◽  
Yuwen Chen ◽  
zuozhi wang ◽  
...  

Large surface roughness, especially caused by the large particles generated during both the transfer and the doping processes of graphene grown by chemical vapor deposition (CVD) is always a critical...


Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 545
Author(s):  
Yi Zhang ◽  
Wei Jiang ◽  
Dezhi Feng ◽  
Chenguang Wang ◽  
Yi Xu ◽  
...  

2D molybdenum disulfide (MoS2)-based thin film transistors are widely used in biosensing, and many efforts have been made to improve the detection limit and linear range. However, in addition to the complexity of device technology and biological modification, the compatibility of the physical device with biological solutions and device reusability have rarely been considered. Herein, we designed and synthesized an array of MoS2 by employing a simple-patterned chemical vapor deposition growth method and meanwhile exploited a one-step biomodification in a sensing pad based on DNA tetrahedron probes to form a bio-separated sensing part. This solves the signal interference, solution erosion, and instability of semiconductor-based biosensors after contacting biological solutions, and also allows physical devices to be reused. Furthermore, the gate-free detection structure that we first proposed for DNA (BRCA1) detection demonstrates ultrasensitive detection over a broad range of 1 fM to 1 μM with a good linear response of R2 = 0.98. Our findings provide a practical solution for high-performance, low-cost, biocompatible, reusable, and bio-separated biosensor platforms.


2021 ◽  
pp. 1-7
Author(s):  
Haniel Fernandes

<b><i>Background:</i></b> Soccer is an extremely competitive sport, where the most match important moments can be defined in detail. Use of ergogenic supplements can be crucial to improve the performance of a high-performance athlete. Therefore, knowing which ergogenic supplements are important for soccer players can be an interesting strategy to maintain high level in this sport until final and decisive moments of the match. In addition, other supplements, such as dietary supplements, have been studied and increasingly referenced in the scientific literature. But, what if ergogenic supplements were combined with dietary supplements? This review brings some recommendations to improve performance of soccer athletes on the field through dietary and/or ergogenic supplements that can be used simultaneously. <b><i>Summary:</i></b> Soccer is a competitive sport, where the match important moments can be defined in detail. Thus, use of ergogenic supplements covered in this review can improve performance of elite soccer players maintaining high level in the match until final moments, such as creatine 3–5 g day<sup>−1</sup>, caffeine 3–6 mg kg<sup>−1</sup> BW around 60 min before the match, sodium bicarbonate 0.1–0.4 g kg<sup>−1</sup> BW starting from 30 to 180 min before the match, β-alanine 3.2 and 6.4 g day<sup>−1</sup> provided in the sustained-release tablets divided into 4 times a day, and nitrate-rich beetroot juice 60 g in 200 mL of water (6 mmol of NO3<sup>−</sup> L) around 120 min before match or training, including a combination possible with taurine 50 mg kg<sup>−1</sup> BW day<sup>−1</sup>, citrulline 1.2–3.4 g day<sup>−1</sup>, and arginine 1.2–6 g day<sup>−1</sup>. <b><i>Key Messages:</i></b> Soccer athletes can combine ergogenic and dietary supplements to improve their performance on the field. The ergogenic and dietary supplements used in a scientifically recommended dose did not demonstrate relevant side effects. The use of various evidence-based supplements can add up to further improvement in the performance of the elite soccer players.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Myungwoo Son ◽  
Jaewon Jang ◽  
Yongsu Lee ◽  
Jungtae Nam ◽  
Jun Yeon Hwang ◽  
...  

AbstractHere, we demonstrate the fabrication of a Cu-graphene heterostructure interconnect by the direct synthesis of graphene on a Cu interconnect with an enhanced performance. Multilayer graphene films were synthesized on Cu interconnect patterns using a liquid benzene or pyridine source at 400 °C by atmospheric pressure chemical vapor deposition (APCVD). The graphene-capped Cu interconnects showed lower resistivity, higher breakdown current density, and improved reliability compared with those of pure Cu interconnects. In addition, an increase in the carrier density of graphene by doping drastically enhanced the reliability of the graphene-capped interconnect with a mean time to failure of >106 s at 100 °C under a continuous DC stress of 3 MA cm−2. Furthermore, the graphene-capped Cu heterostructure exhibited enhanced electrical properties and reliability even if it was a damascene-patterned structure, which indicates compatibility with practical applications such as next-generation interconnect materials in CMOS back-end-of-line (BEOL).


Diversity ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 71
Author(s):  
Charalampos Dimitriadis ◽  
Ivoni Fournari-Konstantinidou ◽  
Laurent Sourbès ◽  
Drosos Koutsoubas ◽  
Stelios Katsanevakis

Understanding the interactions among invasive species, native species and marine protected areas (MPAs), and the long-term regime shifts in MPAs is receiving increased attention, since biological invasions can alter the structure and functioning of the protected ecosystems and challenge conservation efforts. Here we found evidence of marked modifications in the rocky reef associated biota in a Mediterranean MPA from 2009 to 2019 through visual census surveys, due to the presence of invasive species altering the structure of the ecosystem and triggering complex cascading effects on the long term. Low levels of the populations of native high-level predators were accompanied by the population increase and high performance of both native and invasive fish herbivores. Subsequently the overgrazing and habitat degradation resulted in cascading effects towards the diminishing of the native and invasive invertebrate grazers and omnivorous benthic species. Our study represents a good showcase of how invasive species can coexist or exclude native biota and at the same time regulate or out-compete other established invaders and native species.


Sign in / Sign up

Export Citation Format

Share Document