scholarly journals Gut microbiota from patients with arteriosclerotic CSVD induces higher IL-17A production in neutrophils via activating RORγt

2021 ◽  
Vol 7 (4) ◽  
pp. eabe4827
Author(s):  
Wei Cai ◽  
Xiaodong Chen ◽  
Xuejiao Men ◽  
Hengfang Ruan ◽  
Mengyan Hu ◽  
...  

The intestinal microbiota shape the host immune system and influence the outcomes of various neurological disorders. Arteriosclerotic cerebral small vessel disease (aCSVD) is highly prevalent among the elderly with its pathological mechanisms yet is incompletely understood. The current study investigated the ecology of gut microbiota in patients with aCSVD, particularly its impact on the host immune system. We reported that the altered composition of gut microbiota was associated with undesirable disease outcomes and exacerbated inflammaging status. When exposed to the fecal bacterial extracts from a patient with aCSVD, human and mouse neutrophils were activated, and capacity of interleukin-17A (IL-17A) production was increased. Mechanistically, RORγt signaling in neutrophils was activated by aCSVD-associated gut bacterial extracts to up-regulate IL-17A production. Our findings revealed a previously unrecognized implication of the gut-immune-brain axis in aCSVD pathophysiology, with therapeutic implications.

2020 ◽  
Vol 19 (7) ◽  
pp. 509-526
Author(s):  
Qin Huang ◽  
Fang Yu ◽  
Di Liao ◽  
Jian Xia

: Recent studies implicate microbiota-brain communication as an essential factor for physiology and pathophysiology in brain function and neurodevelopment. One of the pivotal mechanisms about gut to brain communication is through the regulation and interaction of gut microbiota on the host immune system. In this review, we will discuss the role of microbiota-immune systeminteractions in human neurological disorders. The characteristic features in the development of neurological diseases include gut dysbiosis, the disturbed intestinal/Blood-Brain Barrier (BBB) permeability, the activated inflammatory response, and the changed microbial metabolites. Neurological disorders contribute to gut dysbiosis and some relevant metabolites in a top-down way. In turn, the activated immune system induced by the change of gut microbiota may deteriorate the development of neurological diseases through the disturbed gut/BBB barrier in a down-top way. Understanding the characterization and identification of microbiome-immune- brain signaling pathways will help us to yield novel therapeutic strategies by targeting the gut microbiome in neurological disease.


Nutrients ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1590 ◽  
Author(s):  
Nina Hansen ◽  
Anette Sams

This review provides evidence that not only the content of nutrients but indeed the structural organization of nutrients is a major determinant of human health. The gut microbiota provides nutrients for the host by digesting food structures otherwise indigestible by human enzymes, thereby simultaneously harvesting energy and delivering nutrients and metabolites for the nutritional and biological benefit of the host. Microbiota-derived nutrients, metabolites, and antigens promote the development and function of the host immune system both directly by activating cells of the adaptive and innate immune system and indirectly by sustaining release of monosaccharides, stimulating intestinal receptors and secreting gut hormones. Multiple indirect microbiota-dependent biological responses contribute to glucose homeostasis, which prevents hyperglycemia-induced inflammatory conditions. The composition and function of the gut microbiota vary between individuals and whereas dietary habits influence the gut microbiota, the gut microbiota influences both the nutritional and biological homeostasis of the host. A healthy gut microbiota requires the presence of beneficial microbiotic species as well as vital food structures to ensure appropriate feeding of the microbiota. This review focuses on the impact of plant-based food structures, the “fiber-encapsulated nutrient formulation”, and on the direct and indirect mechanisms by which the gut microbiota participate in host immune function.


mBio ◽  
2015 ◽  
Vol 6 (3) ◽  
Author(s):  
Philipp Engel ◽  
Kelsey D. Bartlett ◽  
Nancy A. Moran

ABSTRACT Honeybees harbor well-defined bacterial communities in their guts. The major members of these communities appear to benefit the host, but little is known about how they interact with the host and specifically how they interface with the host immune system. In the pylorus, a short region between the midgut and hindgut, honeybees frequently exhibit scab-like structures on the epithelial gut surface. These structures are reminiscent of a melanization response of the insect immune system. Despite the wide distribution of this phenotype in honeybee populations, its cause has remained elusive. Here, we show that the presence of a common member of the bee gut microbiota, the gammaproteobacterium Frischella perrara, correlates with the appearance of the scab phenotype. Bacterial colonization precedes scab formation, and F. perrara specifically localizes to the melanized regions of the host epithelium. Under controlled laboratory conditions, we demonstrate that exposure of microbiota-free bees to F. perrara but not to other bacteria results in scab formation. This shows that F. perrara can become established in a spatially restricted niche in the gut and triggers a morphological change of the epithelial surface, potentially due to a host immune response. As an intermittent colonizer, this bacterium holds promise for addressing questions of community invasion in a simple yet relevant model system. Moreover, our results show that gut symbionts of bees engage in differential host interactions that are likely to affect gut homeostasis. Future studies should focus on how these different gut bacteria impact honeybee health. IMPORTANCE As pollinators, honeybees are key species for agricultural and natural ecosystems. Their guts harbor simple communities composed of characteristic bacterial species. Because of these features, bees are ideal systems for studying fundamental aspects of gut microbiota-host interactions. However, little is known about how these bacteria interact with their host. Here, we show that a common member of the bee gut microbiota causes the formation of a scab-like structure on the gut epithelium of its host. This phenotype was first described in 1946, but since then it has not been much further characterized, despite being found in bee populations worldwide. The scab phenotype is reminiscent of melanization, a conserved innate immune response of insects. Our results show that high abundance of one member of the bee gut microbiota triggers this specific phenotype, suggesting that the gut microbiota composition can affect the immune status of this key pollinator species.


Immuno ◽  
2021 ◽  
Vol 1 (4) ◽  
pp. 583-594
Author(s):  
Takehiro Hirano ◽  
Hiroshi Nakase

The gut microbiota has diverse microbial components, including bacteria, viruses, and fungi. The interaction between gut microbiome components and immune responses has been studied extensively over the last decade. Several studies have reported the potential role of the gut microbiome in maintaining gut homeostasis and the development of disease. The commensal microbiome can preserve the integrity of the mucosal barrier by acting on the host immune system. Contrastingly, dysbiosis-induced inflammation can lead to the initiation and progression of several diseases through inflammatory processes and oxidative stress. In this review, we describe the multifaceted effects of the gut microbiota on several diseases from the perspective of mucosal immunological responses.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Miao Wu ◽  
Jiawei Bai ◽  
Chengtai Ma ◽  
Jie Wei ◽  
Xianjin Du

Tumor immunotherapy is the fourth therapy after surgery, chemotherapy, and radiotherapy. It has made great breakthroughs in the treatment of some epithelial tumors and hematological tumors. However, its adverse reactions are common or even more serious, and the response rate in some solid tumors is not satisfactory. With the maturity of genomics and metabolomics technologies, the effect of intestinal microbiota in tumor development and treatment has gradually been recognized. The microbiota may affect tumor immunity by regulating the host immune system and tumor microenvironment. Some bacteria help fight tumors by activating immunity, while some bacteria mediate immunosuppression to help cancer cells escape from the immune system. More and more studies have revealed that the effects and complications of tumor immunotherapy are related to the composition of the gut microbiota. The composition of the intestinal microbiota that is sensitive to treatment or prone to adverse reactions has certain characteristics. These characteristics may be used as biomarkers to predict the prognosis of immunotherapy and may also be developed as “immune potentiators” to assist immunotherapy. Some clinical and preclinical studies have proved that microbial intervention, including microbial transplantation, can improve the sensitivity of immunotherapy or reduce adverse reactions to a certain extent. With the development of gene editing technology and nanotechnology, the design and development of engineered bacteria that contribute to immunotherapy has become a new research hotspot. Based on the relationship between the intestinal microbiota and immunotherapy, the correct mining of microbial information and the development of reasonable and feasible microbial intervention methods are expected to optimize tumor immunotherapy to a large extent and bring new breakthroughs in tumor treatment.


2019 ◽  
Vol 11 ◽  
pp. 1759720X1984463 ◽  
Author(s):  
Rahul Bodkhe ◽  
Baskar Balakrishnan ◽  
Veena Taneja

Rheumatoid arthritis (RA) is an autoimmune disorder with multifactorial etiology; both genetic and environmental factors are known to be involved in pathogenesis. Treatment with disease-modifying antirheumatic drugs (DMARDs) plays an essential role in controlling disease progression and symptoms. DMARDs have immunomodulatory properties and suppress immune response by interfering in various pro-inflammatory pathways. Recent evidence has shown that the gut microbiota directly and indirectly modulates the host immune system. RA has been associated with dysbiosis of the gut microbiota. Patients with RA treated with DMARDs show partial restoration of eubiotic gut microbiome. Hence, it is essential to understand the impact of DMARDs on the microbial composition and its consequent influences on the host immune system to identify novel therapies for RA. In this review, we discuss the importance of antirheumatic-drug-induced host microbiota modulations and possible probiotics that can generate eubiosis.


PLoS ONE ◽  
2017 ◽  
Vol 12 (8) ◽  
pp. e0182205 ◽  
Author(s):  
Laura Wegener Parfrey ◽  
Milan Jirků ◽  
Radek Šíma ◽  
Marie Jalovecká ◽  
Bohumil Sak ◽  
...  

Author(s):  
Wanyin Tao ◽  
Shu Zhu ◽  
Guorong Zhang ◽  
Xiaofang Wang ◽  
Meng Guo ◽  
...  

The current global COVID-19 pandemic is caused by beta coronavirus Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), which already infected over 10 million and caused 500 thousand deaths by June 2020. Overproduction of cytokines triggered by COVID-19 infection, known as "cytokine storm", is a highly risk factor associated with disease severity. However, how COVID-19 infection induce cytokine storm is still largely unknown. Accumulating in vitro and in vivo evidence suggests that gut is also susceptible to COVID19 infection: Human intestinal organoids, an in vitro model which mimic the specific cell type and spatial structure of the intestine, were susceptible to SARS-CoV2 infection; A significant fraction of patients reported gut symptoms; Viral RNA may persist for more than 30 days and infectious virus could be isolated in fecal samples. The gastrointestinal tract is the primary site of interaction between the host immune system with symbiotic and pathogenic microorganisms. The bacteria resident in our gastrointestinal tract, known as gut microbiota, is important to maintain the homeostasis of our immune system. While imbalance of gut microbiota, or dysbiosis, is associated with multiple inflammation diseases5. It's possible that SARS-CoV-2 infection may lead to alternation of gut microbiota thus worsen the host symptom. IL-18 is a proinflammatory cytokine produced multiple enteric cells, including intestinal epithelial cells (IECs), immune cells as well as enteric nervous system, and was shown to increase in the serum of COVID-19 patients. Immunoglobin A (IgA) is mainly produced in the mucosal surfaces, in humans 40-60mg kg-1 day-1 than all other immunoglobulin isotypes combined, and at least 80% of all plasma cells are located in the intestinal lamina propria. Recent study showed that SARS-CoV-2 specific IgA in the serum is positively correlate with the disease severity in COVID-19 patients11. Here we investigated the alterations of microbiota in COVID-19 patients, and its correlation with inflammatory factor IL-18 and SARS-CoV2 specific IgA.


2021 ◽  
Vol 11 ◽  
Author(s):  
Bolei Li ◽  
Tao Gong ◽  
Yu Hao ◽  
Xuedong Zhou ◽  
Lei Cheng

The past two decades witnessed a revolution in our understanding of host–microbiota interactions that led to the concept of the super-organism consisting of a eukaryotic part and a prokaryotic part. Owing to the critical role of gut microbiota in modulating the host immune system, it is not beyond all expectations that more and more evidence indicated that the shift of gut microbiota influenced responses to numerous forms of cancer immunotherapy. Therapy targeting gut microbiota is becoming a promising strategy to improve cancer immunotherapy. In this review, we discuss the role of the gut microbiota in response to cancer immunotherapy, the mechanisms that the gut microbiota influences cancer immunotherapy, and therapeutic strategies targeting gut microbiota to improve cancer immunotherapy.


Author(s):  
Christina Permata Shalim ◽  
Angelina Yoewono ◽  
Yeodi Utomo ◽  
RA Tuty Kuswardhani

Elderly tends to be more susceptible to infections and chronic diseases. Malnutrition, immunosenescence, and changes in the gut microbiota affect susceptibility to the elderly. Several studies have shown that there is a change in the composition and variability of gut microbiota as we grow older. These changes are considered to increasing the risk of infection and play a role in the pathogenesis of various diseases in elderly. Supplementation of probiotics is expected to overcome the microbiota changes in the elderly and therefore improve the health of the elderly. In this review we will discuss about normal gut microbiota, changes in gut microbiota in the elderly, and effects of probiotics, prebiotics and synbiotics supplementation in the elderly. We will also review recent studies on the health benefits of probiotics for the elderly immune system as a new strategy for healthy aging. Recent data suggests that supplementation of probiotics can increase the immunity of the elderly. Further research is needed so that probiotic supplementation can be applied in clinical setting as a supporting therapy to improve the health of the elderly.


Sign in / Sign up

Export Citation Format

Share Document