scholarly journals Susceptibility of Mycobacterium abscessus to Antimycobacterial Drugs in Preclinical Models

2015 ◽  
Vol 59 (11) ◽  
pp. 6904-6912 ◽  
Author(s):  
Andrés Obregón-Henao ◽  
Kimberly A. Arnett ◽  
Marcela Henao-Tamayo ◽  
Lisa Massoudi ◽  
Elizabeth Creissen ◽  
...  

ABSTRACTOver the last 10 years,Mycobacterium abscessusgroup strains have emerged as important human pathogens, which are associated with significantly higher fatality rates than any other rapidly growing mycobacteria. These opportunistic pathogens are widespread in the environment and can cause a wide range of clinical diseases, including skin, soft tissue, central nervous system, and disseminated infections; by far, the most difficult to treat is the pulmonary form. Infections withM. abscessusare often multidrug-resistant (MDR) and require prolonged treatment with various regimens and, many times, result in high mortality despite maximal therapy. We report here the evaluation of diverse mouse infection models for their ability to produce a progressive high level of infection withM. abscessus. The nude (nu/nu), SCID (severe combined immunodeficiency), gamma interferon knockout (GKO), and granulocyte-macrophage colony-stimulating factor (GMCSF) knockout mice fulfilled the criteria for an optimal model for compound screening. Thus, we set out to assess the antimycobacterial activity of clarithromycin, clofazimine, bedaquiline, and clofazimine-bedaquiline combinations againstM. abscessus-infected GKO and SCID murine infection models. Treatment of GKO and SCID mice with a combination of clofazimine and bedaquiline was the most effective in decreasing theM. abscessusorgan burden.

mSphere ◽  
2018 ◽  
Vol 3 (3) ◽  
Author(s):  
Gregory A. DeIulio ◽  
Li Guo ◽  
Yong Zhang ◽  
Jonathan M. Goldberg ◽  
H. Corby Kistler ◽  
...  

ABSTRACTTheFusarium oxysporumspecies complex (FOSC) is a group of soilborne pathogens causing severe disease in more than 100 plant hosts, while individual strains exhibit strong host specificity. Both chromosome transfer and comparative genomics experiments have demonstrated that lineage-specific (LS) chromosomes contribute to the host-specific pathogenicity. However, little is known about the functional importance of genes encoded in these LS chromosomes. Focusing on signaling transduction, this study compared the kinomes of 12F. oxysporumisolates, including both plant and human pathogens and 1 nonpathogenic biocontrol strain, with 7 additional publicly available ascomycete genomes. Overall,F. oxysporumkinomes are the largest, facilitated in part by the acquisitions of the LS chromosomes. The comparative study identified 99 kinases that are present in almost all examined fungal genomes, forming the core signaling network of ascomycete fungi. Compared to the conserved ascomycete kinome, the expansion of theF. oxysporumkinome occurs in several kinase families such as histidine kinases that are involved in environmental signal sensing and target of rapamycin (TOR) kinase that mediates cellular responses. Comparative kinome analysis suggests a convergent evolution that shapes individualF. oxysporumisolates with an enhanced and unique capacity for environmental perception and associated downstream responses.IMPORTANCEIsolates ofFusarium oxysporumare adapted to survive a wide range of host and nonhost conditions. In addition,F. oxysporumwas recently recognized as the top emerging opportunistic fungal pathogen infecting immunocompromised humans. The sensory and response networks of these fungi undoubtedly play a fundamental role in establishing the adaptability of this group. We have examined the kinomes of 12F. oxysporumisolates and highlighted kinase families that distinguishF. oxysporumfrom other fungi, as well as different isolates from one another. The amplification of kinases involved in environmental signal relay and regulating downstream cellular responses clearly setsFusariumapart from otherAscomycetes. Although the functions of many of these kinases are still unclear, their specific proliferation highlights them as a result of the evolutionary forces that have shaped this species complex and clearly marks them as targets for exploitation in order to combat disease.


2018 ◽  
Vol 62 (5) ◽  
Author(s):  
Rashmi Gupta ◽  
Carolina Rodrigues Felix ◽  
Matthew P. Akerman ◽  
Kate J. Akerman ◽  
Cathryn A. Slabber ◽  
...  

ABSTRACTMycobacterium tuberculosisand the fast-growing speciesMycobacterium abscessusare two important human pathogens causing persistent pulmonary infections that are difficult to cure and require long treatment times. The emergence of drug-resistantM. tuberculosisstrains and the high level of intrinsic resistance ofM. abscessuscall for novel drug scaffolds that effectively target both pathogens. In this study, we evaluated the activity of bis(pyrrolide-imine) gold(III) macrocycles and chelates, originally designed as DNA intercalators capable of targeting human topoisomerase types I and II (Topo1 and Topo2), againstM. abscessusandM. tuberculosis. We identified a total of 5 noncytotoxic compounds active against both mycobacterial pathogens under replicatingin vitroconditions. We chose one of these hits, compound 14, for detailed analysis due to its potent bactericidal mode of inhibition and scalable synthesis. The clinical relevance of this compound was demonstrated by its ability to inhibit a panel of diverseM. tuberculosisandM. abscessusclinical isolates. Prompted by previous data suggesting that compound 14 may target topoisomerase/gyrase enzymes, we demonstrated that it lacked cross-resistance with fluoroquinolones, which target theM. tuberculosisgyrase.In vitroenzyme assays confirmed the potent activity of compound 14 against bacterial topoisomerase 1A (Topo1) enzymes but not gyrase. Novel scaffolds like compound 14 with potent, selective bactericidal activity againstM. tuberculosisandM. abscessusthat act on validated but underexploited targets like Topo1 represent a promising starting point for the development of novel therapeutics for infections by pathogenic mycobacteria.


mSphere ◽  
2020 ◽  
Vol 5 (2) ◽  
Author(s):  
Qi Ouyang ◽  
Kehong Zhang ◽  
Dachuan Lin ◽  
Carl G. Feng ◽  
Yi Cai ◽  
...  

ABSTRACT Tuberculosis (TB) is still the leading killer caused by Mycobacterium tuberculosis infection. There is a clear need for new treatment strategy against TB. It has been reported that tamoxifen, known as a selective estrogen receptor modulator (SERM), exhibits antimycobacterial activity and inhibits M. tuberculosis growth in macrophages. However, it remains unknown whether such antimicrobial activity is a general property of all SERMs and how it works. In this study, we identified that bazedoxifene (BZA), a newer SERM, inhibits intracellular M. tuberculosis growth in macrophages. BZA treatment increases autophagosome formation and LC3B-II protein expression in M. tuberculosis-infected macrophages. We further demonstrated that the enhancement of autophagy by BZA is dependent on increased reactive oxygen species (ROS) production and associated with phosphorylation of Akt/mTOR signaling. In summary, our data reveal a previously unappreciated antimicrobial function of BZA and suggest that future investigation focusing on the mechanism of action of SERMs in macrophages may lead to new host-directed therapies against TB. IMPORTANCE Since current strategies for the treatment of multidrug-resistant tuberculosis (MDR-TB) and extensively drug-resistant tuberculosis (XDR-TB) have low efficacy and highly negative side effects, research on new treatments including novel drugs is essential for curing drug-resistant tuberculosis. Host-directed therapy (HDT) has become a promising idea to modulate host cell responses to enhance protective immunity against pathogens. Bazedoxifene (BZA), which belongs to a new generation of SERMs, shows the ability to inhibit the growth of M. tuberculosis in macrophages and is associated with autophagy. Our findings reveal a previously unrecognized antibacterial function of BZA. We propose that the mechanism of SERMs action in macrophages may provide a new potential measure for host-directed therapies against TB.


2020 ◽  
Vol 86 (10) ◽  
Author(s):  
Dewa A. P. Rasmika Dewi ◽  
Barbara Götz ◽  
Torsten Thomas

ABSTRACT Resistance to the “last-resort” antibiotics, such as carbapenems, has led to very few antibiotics being left to treat infections by multidrug-resistant bacteria. Spread of carbapenem resistance (CR) has been well characterized for the clinical environment. However, there is a lack of information about its environmental distribution. Our study reveals that CR is present in a wide range of Gram-negative bacteria in the coastal seawater environment, including four phyla, eight classes, and 30 genera. These bacteria were likely introduced into seawater via stormwater flows. Some CR isolates found here, such as Acinetobacter junii, Acinetobacter johnsonii, Brevundimonas vesicularis, Enterococcus durans, Pseudomonas monteilii, Pseudomonas fulva, and Stenotrophomonas maltophilia, are further relevant to human health. We also describe a novel metallo-β-lactamase (MBL) for marine Rheinheimera isolates with CR, which has likely been horizontally transferred to Citrobacter freundii or Enterobacter cloacae. In contrast, another MBL of the New Delhi type was likely acquired by environmental Variovorax isolates from Escherichia coli, Klebsiella pneumoniae, or Acinetobacter baumannii utilizing a plasmid. Our findings add to the growing body of evidence that the aquatic environment is both a reservoir and a vector for novel CR genes. IMPORTANCE Resistance against the “last-resort” antibiotics of the carbapenem family is often based on the production of carbapenemases, and this has been frequently observed in clinical samples. However, the dissemination of carbapenem resistance (CR) in the environment has been less well explored. Our study shows that CR is commonly found in a range of bacterial taxa in the coastal aquatic environment and can involve the exchange of novel metallo-β-lactamases from typical environmental bacteria to potential human pathogens or vice versa. The outcomes of this study contribute to a better understanding of how aquatic and marine bacteria can act as reservoirs and vectors for CR outside the clinical setting.


2019 ◽  
Vol 87 (4) ◽  
Author(s):  
Toby L. Bartholomew ◽  
Timothy J. Kidd ◽  
Joana Sá Pessoa ◽  
Raquel Conde Álvarez ◽  
José A. Bengoechea

ABSTRACTAcinetobacter baumanniicauses a wide range of nosocomial infections. This pathogen is considered a threat to human health due to the increasingly frequent isolation of multidrug-resistant strains. There is a major gap in knowledge on the infection biology ofA. baumannii, and only a few virulence factors have been characterized, including lipopolysaccharide. The lipid A expressed byA. baumanniiis hepta-acylated and contains 2-hydroxylaurate. The late acyltransferases controlling the acylation of lipid A have been already characterized. Here, we report the characterization ofA. baumanniiLpxO, which encodes the enzyme responsible for the 2-hydroxylation of lipid A. By genetic methods and mass spectrometry, we demonstrate that LpxO catalyzes the 2-hydroxylation of the laurate transferred byA. baumanniiLpxL. LpxO-dependent lipid A 2-hydroxylation protectsA. baumanniifrom polymyxin B, colistin, and human β-defensin 3. LpxO contributes to the survival ofA. baumanniiin human whole blood and is required for pathogen survival in the waxmothGalleria mellonella. LpxO also protectsAcinetobacterfromG. mellonellaantimicrobial peptides and limits their expression. Further demonstrating the importance of LpxO-dependent modification in immune evasion, 2-hydroxylation of lipid A limits the activation of the mitogen-activated protein kinase Jun N-terminal protein kinase to attenuate inflammatory responses. In addition, LpxO-controlled lipid A modification mediates the production of the anti-inflammatory cytokine interleukin-10 (IL-10) via the activation of the transcriptional factor CREB. IL-10 in turn limits the production of inflammatory cytokines followingA. baumanniiinfection. Altogether, our studies suggest that LpxO is a candidate for the development of anti-A. baumanniidrugs.


2018 ◽  
Vol 62 (8) ◽  
Author(s):  
Mark Pryjma ◽  
Ján Burian ◽  
Charles J. Thompson

ABSTRACTMycobacterium abscessusis a rapidly emerging mycobacterial pathogen causing dangerous pulmonary infections. Because these bacteria are intrinsically multidrug resistant, treatment options are limited and have questionable efficacy. The current treatment regimen relies on a combination of antibiotics, including clarithromycin paired with amikacin and either imipenem or cefoxitin. Tigecycline may be added when triple therapy is ineffective. We initially screened a library containing the majority of clinically available antibiotics for anti-M. abscessusactivity. The screen identified rifabutin, which was then investigated for its interactions withM. abscessusantibiotics used in drug regimens. Combination of rifabutin with either clarithromycin or tigecycline generated synergistic anti-M. abscessusactivity, dropping the rifabutin MIC below concentrations found in the lung. Importantly, these combinations generated bactericidal activity. The triple combination of clarithromycin, tigecycline, and rifabutin was also synergistic, and clinically relevant concentrations had a sterilizing effect onM. abscessuscultures. We suggest that combinations including rifabutin should be further investigated for treatment ofM. abscessuspulmonary infections.


mBio ◽  
2013 ◽  
Vol 4 (3) ◽  
Author(s):  
Mariette Barbier ◽  
Joshua P. Owings ◽  
Inmaculada Martínez-Ramos ◽  
F. Heath Damron ◽  
Rosa Gomila ◽  
...  

ABSTRACTPseudomonas aeruginosais a ubiquitous microorganism and the most common Gram-negative bacterium associated with nosocomial pneumonia, which is a leading cause of mortality among critically ill patients. Although many virulence factors have been identified in this pathogen, little is known about the bacterial components required to initiate infection in the host. Here, we identified a unique trimethyl lysine posttranslational modification of elongation factor Tu as a previously unrecognized bacterial ligand involved in early host colonization byP. aeruginosa. This modification is carried out by a novel methyltransferase, here named elongation factor Tu-modifying enzyme, resulting in a motif that is a structural mimic of the phosphorylcholine present in platelet-activating factor. This novel motif mediates bacterial attachment to airway respiratory cells through platelet-activating factor receptor and is a major virulence factor, expression of which is a prerequisite to pneumonia in a murine model of respiratory infection.IMPORTANCEPhosphorylcholine is an interesting molecule from the microbiological and immunological point of view. It is a crucial epitope for the virulence of many important human pathogens, modulates the host immune response, and is involved in a wide number of processes ranging from allergy to inflammation. Our current work identifies a novel bacterial surface epitope structurally and functionally similar to phosphorylcholine. This novel epitope is crucial for initial colonization of the respiratory tract byPseudomonas aeruginosaand for development of pneumonia. This opens up new targets for the development of novel drugs to preventP. aeruginosapneumonia, which is particularly important given the frequent emergence of multidrug-resistant strains.


2016 ◽  
Vol 60 (4) ◽  
pp. 1967-1973 ◽  
Author(s):  
Rachel L. Soon ◽  
Justin R. Lenhard ◽  
Zackery P. Bulman ◽  
Patricia N. Holden ◽  
Pamela Kelchlin ◽  
...  

ABSTRACTDespite a dearth of new agents currently being developed to combat multidrug-resistant Gram-negative pathogens, the combination of ceftolozane and tazobactam was recently approved by the Food and Drug Administration to treat complicated intra-abdominal and urinary tract infections. To characterize the activity of the combination product, time-kill studies were conducted against 4 strains ofEscherichia colithat differed in the type of β-lactamase they expressed. The four investigational strains included 2805 (no β-lactamase), 2890 (AmpC β-lactamase), 2842 (CMY-10 β-lactamase), and 2807 (CTX-M-15 β-lactamase), with MICs to ceftolozane of 0.25, 4, 8, and >128 mg/liter with no tazobactam, and MICs of 0.25, 1, 4, and 8 mg/liter with 4 mg/liter tazobactam, respectively. All four strains were exposed to a 6 by 5 array of ceftolozane (0, 1, 4, 16, 64, and 256 mg/liter) and tazobactam (0, 1, 4, 16, and 64 mg/liter) over 48 h using starting inocula of 106and 108CFU/ml. While ceftolozane-tazobactam achieved bactericidal activity against all 4 strains, the concentrations of ceftolozane and tazobactam required for a ≥3-log reduction varied between the two starting inocula and the 4 strains. At both inocula, the Hill plots (R2> 0.882) of ceftolozane revealed significantly higher 50% effective concentrations (EC50s) at tazobactam concentrations of ≤4 mg/liter than those at concentrations of ≥16 mg/liter (P< 0.01). Moreover, the EC50s at 108CFU/ml were 2.81 to 66.5 times greater than the EC50s at 106CFU/ml (median, 10.7-fold increase;P= 0.002). These promising results indicate that ceftolozane-tazobactam achieves bactericidal activity against a wide range of β-lactamase-producingE. colistrains.


2019 ◽  
Vol 201 (20) ◽  
Author(s):  
Laís Moreira Granato ◽  
Simone Cristina Picchi ◽  
Maxuel de Oliveira Andrade ◽  
Paula Maria Moreira Martins ◽  
Marco Aurélio Takita ◽  
...  

ABSTRACT Xanthomonas citri subsp. citri causes citrus canker disease worldwide in most commercial varieties of citrus. Its transmission occurs mainly by wind-driven rain. Once X. citri reaches a leaf, it can epiphytically survive by forming a biofilm, which enhances the persistence of the bacteria under different environmental stresses and plays an important role in the early stages of host infection. Therefore, the study of genes involved in biofilm formation has been an important step toward understanding the bacterial strategy for survival in and infection of host plants. In this work, we show that the ecnAB toxin-antitoxin (TA) system, which was previously identified only in human bacterial pathogens, is conserved in many Xanthomonas spp. We further show that in X. citri, ecnA is involved in important processes, such as biofilm formation, exopolysaccharide (EPS) production, and motility. In addition, we show that ecnA plays a role in X. citri survival and virulence in host plants. Thus, this mechanism represents an important bacterial strategy for survival under stress conditions. IMPORTANCE Very little is known about TA systems in phytopathogenic bacteria. ecnAB, in particular, has only been studied in bacterial human pathogens. Here, we showed that it is present in a wide range of Xanthomonas sp. phytopathogens; moreover, this is the first work to investigate the functional role of this TA system in Xanthomonas citri biology, suggesting an important new role in adaptation and survival with implications for bacterial pathogenicity.


mBio ◽  
2020 ◽  
Vol 11 (5) ◽  
Author(s):  
Irina Afonina ◽  
June Ong ◽  
Jerome Chua ◽  
Timothy Lu ◽  
Kimberly A. Kline

ABSTRACT Enterococcus faecalis is an opportunistic pathogen, which can cause multidrug-resistant life-threatening infections. Gaining a complete understanding of enterococcal pathogenesis is a crucial step in identifying a strategy to effectively treat enterococcal infections. However, bacterial pathogenesis is a complex process often involving a combination of genes and multilevel regulation. Compared to established knockout methodologies, CRISPR interference (CRISPRi) approaches enable the rapid and efficient silencing of genes to interrogate gene products and pathways involved in pathogenesis. As opposed to traditional gene inactivation approaches, CRISPRi can also be quickly repurposed for multiplexing or used to study essential genes. Here, we have developed a novel dual-vector nisin-inducible CRISPRi system in E. faecalis that can efficiently silence via both nontemplate and template strand targeting. Since the nisin-controlled gene expression system is functional in various Gram-positive bacteria, the developed CRISPRi tool can be extended to other genera. This system can be applied to study essential genes, genes involved in antimicrobial resistance, and genes involved in biofilm formation and persistence. The system is robust and can be scaled up for high-throughput screens or combinatorial targeting. This tool substantially enhances our ability to study enterococcal biology and pathogenesis, host-bacterium interactions, and interspecies communication. IMPORTANCE Enterococcus faecalis causes multidrug-resistant life-threatening infections and is often coisolated with other pathogenic bacteria from polymicrobial biofilm-associated infections. Genetic tools to dissect complex interactions in mixed microbial communities are largely limited to transposon mutagenesis and traditional time- and labor-intensive allelic-exchange methods. Built upon streptococcal dCas9, we developed an easily modifiable, inducible CRISPRi system for E. faecalis that can efficiently silence single and multiple genes. This system can silence genes involved in biofilm formation and antibiotic resistance and can be used to interrogate gene essentiality. Uniquely, this tool is optimized to study genes important for biofilm initiation, maturation, and maintenance and can be used to perturb preformed biofilms. This system will be valuable to rapidly and efficiently investigate a wide range of aspects of complex enterococcal biology.


Sign in / Sign up

Export Citation Format

Share Document