scholarly journals Effect of Exposure to Chlorhexidine Residues at “During Use” Concentrations on Antimicrobial Susceptibility Profile, Efflux, Conjugative Plasmid Transfer, and Metabolism of Escherichia coli

2020 ◽  
Vol 64 (12) ◽  
Author(s):  
R. Wesgate ◽  
S. Fanning ◽  
Y. Hu ◽  
J.-Y. Maillard

ABSTRACT There is no standardized protocol to predict the concentration levels of microbicides that are left on surfaces as a result of the use of these products, and there is no standardized method to predict the potential risk that such levels pose to emerging antibacterial resistance. The ability to distinguish between selection and adaption processes for antimicrobial resistance in bacteria and the impact of different concentrations of microbicide exposure have not been fully investigated to date. This study considers the effect of exposure to a low concentration of chlorhexidine digluconate (CHX) on selected phenotypes of Escherichia coli and relates the findings to the risk of emerging antimicrobial resistance. A concentration of 0.006 mg/ml CHX is a realistic “during use” exposure concentration measured on surfaces. At this concentration, it was possible for CHX-susceptible bacteria to survive, adapt through metabolic alterations, exhibit a transient decrease in antimicrobial susceptibility, and express stable clinical cross-resistance to front-line antibiotics. Efflux activity was present naturally in tested isolates, and it increased in the presence of 0.00005 mg/ml CHX but ceased with 0.002 mg/ml CHX. Phenotypic microarray assays highlighted a difference in metabolic regulation at 0.00005 mg/ml and 0.002 mg/ml CHX; more changes occurred after growth with the latter concentration. Metabolic phenotype changes were observed for substrates involved with the metabolism of some amino acids, cofactors, and secondary metabolites. It was possible for one isolate to continue transferring ampicillin resistance in the presence of 0.00005 mg/ml CHX, whilst 0.002 mg/ml CHX prevented conjugative transfer. In conclusion, E. coli phenotype responses to CHX exposure are concentration dependent, with realistic residual CHX concentrations resulting in stable clinical cross-resistance to antibiotics.

2014 ◽  
Vol 80 (12) ◽  
pp. 3656-3666 ◽  
Author(s):  
Basanta Kumar Biswal ◽  
Ramzi Khairallah ◽  
Kareem Bibi ◽  
Alberto Mazza ◽  
Ronald Gehr ◽  
...  

ABSTRACTWastewater discharges may increase the populations of pathogens, includingEscherichia coli, and of antimicrobial-resistant strains in receiving waters. This study investigated the impact of UV and peracetic acid (PAA) disinfection on the prevalence of virulence and antimicrobial resistance genes in uropathogenicEscherichia coli(UPEC), the most abundantE. colipathotype in municipal wastewaters. Laboratory disinfection experiments were conducted on wastewater treated by physicochemical, activated sludge, or biofiltration processes; 1,766E. coliisolates were obtained for the evaluation. The target disinfection level was 200 CFU/100 ml, resulting in UV and PAA doses of 7 to 30 mJ/cm2and 0.9 to 2.0 mg/liter, respectively. The proportions of UPECs were reduced in all samples after disinfection, with an average reduction by UV of 55% (range, 22% to 80%) and by PAA of 52% (range, 11% to 100%). Analysis of urovirulence genes revealed that the decline in the UPEC populations was not associated with any particular virulence factor. A positive association was found between the occurrence of urovirulence and antimicrobial resistance genes (ARGs). However, the changes in the prevalence of ARGs in potential UPECs were different following disinfection, i.e., UV appears to have had no effect, while PAA significantly reduced the ARG levels. Thus, this study showed that both UV and PAA disinfections reduced the proportion of UPECs and that PAA disinfection also reduced the proportion of antimicrobial resistance gene-carrying UPEC pathotypes in municipal wastewaters.


2015 ◽  
Vol 59 (9) ◽  
pp. 5171-5180 ◽  
Author(s):  
M. A. Fleury ◽  
G. Mourand ◽  
E. Jouy ◽  
F. Touzain ◽  
L. Le Devendec ◽  
...  

ABSTRACTResistance to extended-spectrum cephalosporins (ESCs) is an important health concern. Here, we studied the impact of the administration of a long-acting form of ceftiofur on the pig gut microbiota and ESC resistance inEscherichia coli. Pigs were orally inoculated with an ESC-resistantE. coliM63 strain harboring a conjugative plasmid carrying a gene conferring resistance,blaCTX-M-1. On the same day, they were given or not a unique injection of ceftiofur. Fecal microbiota were studied using quantitative PCR analysis of the main bacterial groups and quantification of short-chain fatty acids.E. coliand ESC-resistantE. coliwere determined by culture methods, and the ESC-resistantE. coliisolates were characterized. The copies of theblaCTX-M-1gene were quantified. After ceftiofur injection, the main change in gut microbiota was the significant but transitory decrease in theE. colipopulation. Acetate and butyrate levels were significantly lower in the treated group. In all inoculated groups,E. coliM63 persisted in most pigs, and theblaCTX-M-1gene was transferred to otherE. coli. Culture and PCR results showed that the ceftiofur-treated group shed significantly more resistant strains 1 and 3 days after ESC injection. Thereafter, on most dates, there were no differences between the groups, but notably, one pig in the nontreated group regularly excreted very high numbers of ESC-resistantE. coli, probably leading to a higher contamination level in its pen. In conclusion, the use of ESCs, and also the presence of high-shedding animals, are important features in the spread of ESC resistance.


2012 ◽  
Vol 56 (4) ◽  
pp. 2181-2183 ◽  
Author(s):  
Guillermo V. Sanchez ◽  
Ronald N. Master ◽  
James A. Karlowsky ◽  
Jose M. Bordon

ABSTRACTThis study examinesin vitroantimicrobial resistance data fromEscherichia coliisolates obtained from urine samples of U.S. outpatients between 2000 and 2010 using The Surveillance Network (TSN). Antimicrobial susceptibility results (n= 12,253,679) showed the greatest increases inE. coliresistance from 2000 to 2010 for ciprofloxacin (3% to 17.1%) and trimethoprim-sulfamethoxazole (TMP-SMX) (17.9% to 24.2%), whereas nitrofurantoin (0.8% to 1.6%) and ceftriaxone (0.2% to 2.3%) showed minimal change. From 2000 to 2010, the antimicrobial resistance of urinaryE. coliisolates to ciprofloxacin and TMP-SMX among outpatients increased substantially.


2015 ◽  
Vol 59 (6) ◽  
pp. 3413-3423 ◽  
Author(s):  
Tânia Curiao ◽  
Emmanuela Marchi ◽  
Carlo Viti ◽  
Marco R. Oggioni ◽  
Fernando Baquero ◽  
...  

ABSTRACTExposure to biocides may result in cross-resistance to other antimicrobials. Changes in biocide and antibiotic susceptibilities, metabolism, and fitness costs were studied here in biocide-selectedEscherichia coliandKlebsiella pneumoniaemutants.E. coliandK. pneumoniaemutants with various degrees of triclosan susceptibility were obtained after exposure to triclosan (TRI), benzalkonium chloride (BKC), chlorhexidine (CHX) or sodium hypochlorite (SHC), and ampicillin or ciprofloxacin. Alterations in antimicrobial susceptibility and metabolism in mutants were tested using Phenotype MicroArrays. The expression of AcrAB pump and global regulators (SoxR, MarA, and RamA) was measured by quantitative reverse transcription-PCR (qRT-PCR), and the central part of thefabIgene was sequenced. The fitness costs of resistance were assessed by a comparison of relative growth rates. Triclosan-resistant (TRIr) and triclosan-hypersusceptible (TRIhs) mutants ofE. coliandK. pneumoniaewere obtained after selection with biocides and/or antibiotics.E. coliTRIrmutants, including those with mutations in thefabIgene or in the expression ofacrB,acrF, andmarA, exhibited changes in susceptibility to TRI, CHX, and antibiotics. TRIrmutants for which the TRI MIC was high presented improved metabolism of carboxylic acids, amino acids, and carbohydrates. In TRIrmutants, resistance to one antimicrobial provoked hypersusceptibility to another one(s). TRIrmutants had fitness costs, particularlymarA-overexpressing (E. coli) orramA-overexpressing (K. pneumoniae) mutants. TRI, BKC, and CIP exposure frequently yielded TRIrmutants exhibiting alterations in AraC-like global regulators (MarA, SoxR, and RamA), AcrAB-TolC, and/or FabI, and influencing antimicrobial susceptibility, fitness, and metabolism. These various phenotypes suggest a trade-off of different selective processes shaping the evolution toward antibiotic/biocide resistance and influencing other adaptive traits.


2020 ◽  
Vol 86 (23) ◽  
Author(s):  
Vanesa García ◽  
Michela Gambino ◽  
Karl Pedersen ◽  
Svend Haugegaard ◽  
John Elmerdahl Olsen ◽  
...  

ABSTRACT This study aimed to characterize in silico enterotoxigenic Escherichia coli F4- and F18-positive isolates (n = 90) causing swine postweaning diarrhea, including pathogenic potential, phylogenetic relationship, antimicrobial and biocide resistance, prophage content, and metal tolerance rates. F4 strains belonged mostly to the O149 and O6 serogroups and ST100 and ST48 sequence types (STs). F18 strains were mainly assigned to the O8 and O147 serogroups and ST10, ST23, and ST42. The highest rates of antimicrobial resistance were found against streptomycin, sulfamethoxazole, tetracycline, trimethoprim, and ampicillin. No resistance was found toward ciprofloxacin, cefotaxime, ceftiofur, and colistin. Genes conferring tolerance to copper (showing the highest diversity), cadmium, silver, and zinc were predicted in all genomes. Enterotoxin genes (ltcA, 100% F4, 62% F18; astA, 100% F4, 38.1% F18; sta, 18.8% F4, 38.1% F18; stb, 100% F4, 76.2% F18) and fimbria-encoding genes typed as F4ac and F18ac were detected in all strains, in addition to up to 16 other virulence genes in individual strains. Phage analysis predicted between 7 and 20 different prophage regions in each strain. A highly diverse variety of plasmids was found; IncFII, IncFIB, and IncFIC were prevalent among F4 isolates, while IncI1 and IncX1 were dominant among F18 strains. Interestingly, F4 isolates from the early 1990s belonged to the same clonal group detected for most of the F4 strains from 2018 to 2019 (ONT:H10-A-ST100-CH27-0). The small number of single-nucleotide polymorphism differences between the oldest and recent F4 ST100 isolates suggests a relatively stable genome. Overall, the isolates analyzed in this study showed remarkably different genetic traits depending on the fimbria type. IMPORTANCE Diarrhea in the postweaning period due to enterotoxigenic E. coli (ETEC) is an economically relevant disease in pig production worldwide. In Denmark, prevention is mainly achieved by zinc oxide administration (to be discontinued by 2022). In addition, a breeding program has been implemented that aims to reduce the prevalence of this illness. Treatment with antimicrobials contributes to the problem of antimicrobial resistance (AMR) development. As a novelty, this study aims to deeply understand the genetic population structure and variation among diarrhea-associated isolates by whole-genome sequencing characterization. ST100-F4ac is the dominant clonal group circulating in Danish herds and showed high similarity to ETEC ST100 isolates from China, the United States, and Spain. High rates of AMR and high diversity of virulence genes were detected. The characterization of diarrhea-related ETEC is important for understanding the disease epidemiology and pathogenesis and for implementation of new strategies aiming to reduce the impact of the disease in pig production.


2016 ◽  
Vol 82 (24) ◽  
pp. 7197-7204 ◽  
Author(s):  
Getahun E. Agga ◽  
John W. Schmidt ◽  
Terrance M. Arthur

ABSTRACTConcerns have been raised that in-feed chlortetracycline (CTC) may increase antimicrobial resistance (AMR), specifically tetracycline-resistant (TETr)Escherichia coliand third-generation cephalosporin-resistant (3GCr)E. coli. We evaluated the impact of a 5-day in-feed CTC prophylaxis on animal health, TETrE. coli, and 3GCrE. coli. A control group of cattle (n= 150) received no CTC, while a CTC group (n= 150) received in-feed CTC (10 mg/lb of body weight/day) from the 5th to the 9th day after feedlot arrival. Over 25% (38/150) of the animals in the control group developed illnesses requiring therapeutic treatment with antimicrobials critically important to human medicine. Only two animals (1.3%) in the CTC group required such treatments. Fecal swab and pen surface occurrences of genericE. coli(isolated on media that did not contain antimicrobials of interest and were not isolated based on any specific resistance), TETrE. coli, and 3GCrE. coliwere determined on five sampling occasions: arrival at the feedlot, 5 days posttreatment (5 dpt), 27 dpt, 75 dpt, and 117 dpt. On 5 dpt, TETrE. coliconcentrations were higher for the CTC group than the control group (P< 0.01). On 27 dpt, 75 dpt, and 117 dpt, TETrE. coliconcentrations did not differ between groups. 3GCrE. colioccurrences did not differ between control and CTC groups on any sampling occasion. For both groups, generic, TETr, and 3GCrE. colioccurrences were highest on 75 dpt and 117 dpt, suggesting that factors other than in-feed CTC contributed more significantly to antimicrobial-resistantE. colioccurrence.IMPORTANCEThe occurrence of human bacterial infections resistant to antimicrobial therapy has been increasing. It has been postulated that antimicrobial resistance was inevitable, but the life span of the antimicrobial era has been prematurely compromised due to the misuse of antimicrobials in clinical and agricultural practices. Direct evidence relating the use of antimicrobials in livestock production to diminished human health outcomes due to antimicrobial resistance is lacking, and the U.S. Food and Drug Administration has taken an approach to maximize therapeutic efficacy and minimize the selection of resistant microorganisms through judicious use of antimicrobials. This study demonstrated that prophylactic in-feed treatment of chlortetracycline administered for 5 days to calves entering feedlots is judicious, as this therapy reduced animal morbidity, reduced the use of antimicrobials more critical to human health, and had no long-term impact on the occurrence of antimicrobial-resistantE. coli.


2021 ◽  
Vol 9 (2) ◽  
pp. 326
Author(s):  
Frederick Adzitey ◽  
Nurul Huda ◽  
Amir Husni Mohd Shariff

Meat is an important food source that can provide a significant amount of protein for human development. The occurrence of bacteria that are resistant to antimicrobials in meat poses a public health risk. This study evaluated the occurrence and antimicrobial resistance of E. coli (Escherichia coli) isolated from raw meats, ready-to-eat (RTE) meats and their related samples in Ghana. E. coli was isolated using the USA-FDA Bacteriological Analytical Manual and phenotypic antimicrobial susceptibility test was performed by the disk diffusion method. Of the 200 examined meats and their related samples, 38% were positive for E. coli. Notably, E. coli was highest in raw beef (80%) and lowest in RTE pork (0%). The 45 E. coli isolates were resistant ≥ 50% to amoxicillin, trimethoprim and tetracycline. They were susceptible to azithromycin (87.1%), chloramphenicol (81.3%), imipenem (74.8%), gentamicin (72.0%) and ciprofloxacin (69.5%). A relatively high intermediate resistance of 33.0% was observed for ceftriaxone. E. coli from raw meats, RTE meats, hands of meat sellers and working tools showed some differences and similarities in their phenotypic antimicrobial resistance patterns. Half (51.1%) of the E. coli isolates exhibited multidrug resistance. The E. coli isolates showed twenty-two different resistant patterns, with a multiple antibiotic resistance index of 0.0 to 0.7. The resistant pattern amoxicillin (A, n = 6 isolates) and amoxicillin-trimethoprim (A-TM, n = 6 isolates) were the most common. This study documents that raw meats, RTE meats and their related samples in Ghana are potential sources of antimicrobial-resistant E. coli and pose a risk for the transfer of resistant bacteria to the food chain, environment and humans.


2018 ◽  
Vol 38 (11) ◽  
pp. 2150-2154 ◽  
Author(s):  
Ruben V. Horn ◽  
Windleyanne G.A. Bezerra ◽  
Elisângela S. Lopes ◽  
Régis S.C. Teixeira ◽  
Isaac N.G. Silva ◽  
...  

ABSTRACT: This study aimed to isolate Escherichia coli and Salmonella enterica from captured feral pigeons in Fortaleza, Brazil, and, in addition to evaluate the antimicrobial susceptibility profiles and diagnose diarrheagenic E. coli strains. Pigeons were captured in four public locations in Fortaleza with three techniques. Individual cloacal swab samples were collected and submitted to bacterial isolation, biochemical identification and antimicrobial susceptibility test. Disk diffusion technique was used with twelve antibiotics. E. coli strains were submitted to DNA extraction followed by PCR to diagnose five diarrheagenic pathotypes. A total of 124 birds were captured. One bird was positive for Salmonella enterica (0.81%) and 121 (97.58%) were positive for E. coli. Among these, 110 isolates were submitted to antimicrobial susceptibility test and 28.18% (31/110) presented resistance to at least one antibiotic. Resistance to azithromycin was the most frequent (21.82%), followed by tetracycline (10.91%) and sulfamethoxazole with trimethoprim (8.9%). Multidrug resistance, calculated as a resistance to at least 3 antimicrobial classes, was identified in 3.64% (4/110) of strains. The maximum number of antimicrobial classes to which one strain was resistant was seven. Results demonstrated nine different resistance profiles and the most frequent was tetracycline and sulfamethoxazole with trimethoprim (4 strains), followed by chloramphenicol, azithromycin, tetracycline and sulfamethoxazole with trimethoprim (3 strains). Amoxicillin with clavulanic acid and tobramycin presented lowest levels of antimicrobial resistance, to which none of the tested strains were resistant. A single strain was positive for the eltB gene, which is a diagnostic tool to identify the Enterotoxigenic E. coli (ETEC) pathotype. None of the other investigated genes (stx1, stx2, estA, eaeA, ipaH, aatA and aaiC) were identified. The single isolate of S. enterica was a rough strain of Salmonella enterica subsp. enterica, but serotype identification was not possible. However, this isolate presented resistance to amoxicillin, amoxicillin with clavulanic acid, tetracycline and sulfamethoxazole with trimethoprim. Therefore, captured feral pigeons of Fortaleza presented a low prevalence of S. enterica and diarrheagenic E. coli. Considering the investigated pathogens, our results suggest a good health status and a low public health risk. However, important antimicrobial resistance profiles were identified.


2015 ◽  
Vol 59 (6) ◽  
pp. 3059-3065 ◽  
Author(s):  
C. Pitart ◽  
F. Marco ◽  
T. A. Keating ◽  
W. W. Nichols ◽  
J. Vila

ABSTRACTCeftazidime-avibactam and comparator antibiotics were tested by the broth microdilution method against 200Enterobacteriaceaeand 25Pseudomonas aeruginosastrains resistant to fluoroquinolones (including strains with the extended-spectrum β-lactamase [ESBL] phenotype and ceftazidime-resistant strains) collected from our institution. The MICs and mechanisms of resistance to fluoroquinolone were also studied. Ninety-nine percent of fluoroquinolone-resistantEnterobacteriaceaestrains were inhibited at a ceftazidime-avibactam MIC of ≤4 mg/liter (using the susceptible CLSI breakpoint for ceftazidime alone as a reference). Ceftazidime-avibactam was very active against ESBLEscherichia coli(MIC90of 0.25 mg/liter), ESBLKlebsiella pneumoniae(MIC90of 0.5 mg/liter), ceftazidime-resistant AmpC-producing species (MIC90of 1 mg/liter), non-ESBLE. coli(MIC90of ≤0.125 mg/liter), non-ESBLK. pneumoniae(MIC90of 0.25 mg/liter), and ceftazidime-nonresistant AmpC-producing species (MIC90of ≤0.5 mg/liter). Ninety-six percent of fluoroquinolone-resistantP. aeruginosastrains were inhibited at a ceftazidime-avibactam MIC of ≤8 mg/liter (using the susceptible CLSI breakpoint for ceftazidime alone as a reference), with a MIC90of 8 mg/liter. Additionally, fluoroquinolone-resistant mutants from each species tested were obtainedin vitrofrom two strains, one susceptible to ceftazidime and the other a β-lactamase producer with a high MIC against ceftazidime but susceptible to ceftazidime-avibactam. Thereby, the impact of fluoroquinolone resistance on the activity of ceftazidime-avibactam could be assessed. The MIC90values of ceftazidime-avibactam for the fluoroquinolone-resistant mutant strains ofEnterobacteriaceaeandP. aeruginosawere ≤4 mg/liter and ≤8 mg/liter, respectively. We conclude that the presence of fluoroquinolone resistance does not affectEnterobacteriaceaeandP. aeruginosasusceptibility to ceftazidime-avibactam; that is, there is no cross-resistance.


2014 ◽  
Vol 59 (2) ◽  
pp. 1337-1340 ◽  
Author(s):  
Wan-Jiang Zhang ◽  
Xiu-Mei Wang ◽  
Lei Dai ◽  
Xin Hua ◽  
Zhimin Dong ◽  
...  

ABSTRACTTwo porcineEscherichia coliisolates harbored thecfrgene on conjugative plasmids of 38,405 bp (pGXEC6) and 41,646 bp (pGXEC3). In these two plasmids, thecfrgene was located within a 4,612-bp region containing atnpA-IS26-cfr-IS26-Δhypelement. Plasmid pGXEC3 was almost identical to pGXEC6 except for a 3,235-bp ISEcp1-blaCTX-M-14binsertion. The colocation of the multiresistancecfrgene with an extended-spectrum-β-lactamase gene on a conjugative plasmid may support the dissemination of these genes by coselection.


Sign in / Sign up

Export Citation Format

Share Document