scholarly journals Biofilms and coronaviruses reservoirs: a perspective review

Author(s):  
Rafael Gomes Von Borowski ◽  
Danielle Silva Trentin

Bats are a key reservoir of coronaviruses (CoVs), including the agent of the severe acute respiratory syndrome, SARS-CoV-2, responsible for the recent deadly viral pneumonia pandemic. However, understanding how bats can harbor several microorganisms without developing illnesses is still a matter under discussion. Viruses and other pathogens are often studied as stand-alone even though it is known that, in nature, they mostly live in multi-species associations called biofilms - both externally and within the host. Microorganisms in biofilms are enclosed by an extracellular matrix that confers protection and improves survival. Previous studies have shown that viruses can secondarily colonize preexisting biofilms, and viral biofilms have also been already described. In this review, we raise the perspective that CoVs can persistently infect bats due to occurrence in biofilm structures. This phenomenon potentially provides an optimal environment for non-pathogenic and well-adapted viruses to interact with the host, as well as for viral recombination. Biofilms can also enhance virion viability in extracellular environments, such as in fomites and aquatic sediments, allowing viral persistence and dissemination. Moreover, understanding CoVs biofilm lifestyle in reservoirs might contribute to explain several burning questions that remain unanswered including persistence and transmissibility by highly pathogenic emerging CoVs.

2021 ◽  
Vol 12 ◽  
Author(s):  
Liang Zhang ◽  
Shuaiyin Chen ◽  
Weiguo Zhang ◽  
Haiyan Yang ◽  
Yuefei Jin ◽  
...  

Coronavirus Disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a pandemic since March 2020 and led to significant challenges to over 200 countries and regions all over the world. The establishment of highly pathogenic coronavirus animal model is beneficial for the study of vaccines and pathogenic mechanism of the virus. Laboratory mice, Syrian hamsters, Non-human primates and Ferrets have been used to establish animal models of emerging coronavirus infection. Different animal models can reproduce clinical infection symptoms at different levels. Appropriate animal models are of great significance for the pathogenesis of COVID-19 and the research progress related to vaccines. This review aims to introduce the current progress about experimental animal models for SARS-CoV-2, and collectively generalize critical aspects of disease manifestation in humans and increase their usefulness in research into COVID-19 pathogenesis and developing new preventions and treatments.


2021 ◽  
pp. 405-408
Author(s):  
Sylvia Nikolaeva Genova ◽  
Nikolaeva Genova ◽  
Mina Miroslavova Pencheva ◽  
Alexander Georgiev Ivanov

The full spectrum of coronavirus disease 2019 (COVID-19) has not been fully described yet. COVID-19 is associated with a high risk of thrombotic complications such as venous thromboembolism and cerebrovascular disease. Here, we report an autopsy case of a 55-year-old woman diagnosed with severe viral pneumonia complicated by acute cerebral infarction and venous and arterial thrombosis in different organs. The patient died due to severe acute respiratory syndrome coronavirus 2. Macroscopically and histologically, in addition to viral pneumonia and diffuse hemorrhages, fibrin clots were found in arteries and venous vessels of medium and large size in the brain, lungs, and pancreas. Propagation of cerebrovascular thrombosis has led to extensive cerebral infarction. The dating of this infarction, according to the macroscopical findings and the histological changes, was between 24 and 48 h before death. This case confirms the hypothesis on the risk of generalized arterial and venous thromboses in coronavirus infection.


2020 ◽  
Vol 7 (1) ◽  
pp. 69-77
Author(s):  
Aldonna Maria Susngi ◽  
◽  
Clara Ermine Sawian

The novel severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2), the causative agent of Coronavirus disease 2019 (COVID-19) is a β-coronavirus, which also includes the highly pathogenic severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome Coronavirus (MERS-CoV). Emerging in December 2019 from Wuhan, China, it has spread worldwide resulting in a pandemic that has not ended till date. This review highlights some of the key features of the virology of SARS-CoV-2.


2020 ◽  
Vol 9 (6) ◽  
pp. 1944 ◽  
Author(s):  
Vincenzo Russo ◽  
Roberta Bottino ◽  
Andreina Carbone ◽  
Anna Rago ◽  
Andrea Antonio Papa ◽  
...  

A highly pathogenic human coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been recently recognized in Wuhan, China, as the cause of the coronavirus disease 2019 (COVID-19) outbreak which has spread rapidly from China to other countries in the world, causing a pandemic with alarming morbidity and mortality. The emerging epidemiological data about COVID-19 patients suggest an association between cardiovascular diseases (CVD) and SARS-CoV-2 infection, in term of clinical features at hospital admission and prognosis for disease severity. The aim of our review is to describe the cardiological features of COVID-19 patients at admission, the acute cardiac presentation, the clinical outcome for patients with underlying CVD and the pharmacological implications for disease management.


2020 ◽  
Vol 58 (5) ◽  
Author(s):  
Suliman Khan ◽  
Rabeea Siddique ◽  
Muhammad Adnan Shereen ◽  
Ashaq Ali ◽  
Jianbo Liu ◽  
...  

ABSTRACT The new decade of the 21st century (2020) started with the emergence of a novel coronavirus known as SARS-CoV-2 that caused an epidemic of coronavirus disease (COVID-19) in Wuhan, China. It is the third highly pathogenic and transmissible coronavirus after severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV) emerged in humans. The source of origin, transmission to humans, and mechanisms associated with the pathogenicity of SARS-CoV-2 are not yet clear, however, its resemblance to SARS-CoV and several other bat coronaviruses was recently confirmed through genome sequencing-related studies. The development of therapeutic strategies is necessary in order to prevent further epidemics and cure infections. In this review, we summarize current information about the emergence, origin, diversity, and epidemiology of three pathogenic coronaviruses with a specific focus on the current outbreak in Wuhan, China. Furthermore, we discuss the clinical features and potential therapeutic options that may be effective against SARS-CoV-2.


2013 ◽  
Vol 2013 ◽  
pp. 1-32 ◽  
Author(s):  
Jesús Serrano-Luna ◽  
Carolina Piña-Vázquez ◽  
Magda Reyes-López ◽  
Guillermo Ortiz-Estrada ◽  
Mireya de la Garza

The standard reference for pathogenic and nonpathogenic amoebae is the human parasiteEntamoeba histolytica; a direct correlation between virulence and protease expression has been demonstrated for this amoeba. Traditionally, proteases are considered virulence factors, including those that produce cytopathic effects in the host or that have been implicated in manipulating the immune response. Here, we expand the scope to other amoebae, including less-pathogenicEntamoebaspecies and highly pathogenic free-living amoebae. In this paper, proteases that affect mucin, extracellular matrix, immune system components, and diverse tissues and cells are included, based on studies in amoebic cultures and animal models. We also include proteases used by amoebae to degrade iron-containing proteins because iron scavenger capacity is currently considered a virulence factor for pathogens. In addition, proteases that have a role in adhesion and encystation, which are essential for establishing and transmitting infection, are discussed. The study of proteases and their specific inhibitors is relevant to the search for new therapeutic targets and to increase the power of drugs used to treat the diseases caused by these complex microorganisms.


Author(s):  
Shilpa Jaryal ◽  
Gurpreet Kaur ◽  
Jageer Chhina ◽  
Jannat Sharma ◽  
Shreen Mann

Coronavirus disease (COVID-19) is an infectious disease caused by a coronavirus. Coronaviruses are a group of enveloped viruses with nonsegmented, single-stranded, and positive-sense RNA genomes. Apart from infecting a variety of economically important vertebrates (such as pigs and chickens), six coronaviruses have been known to infect human hosts and cause respiratory diseases. Among them, severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV) are zoonotic and highly pathogenic coronaviruses that have resulted in regional and global outbreaks Coronaviruses possess a distinctive morphology, the name being derived from the outer fringe, or corona‖ of embedded envelope protein. Members of the family Coronaviridae cause a broad spectrum of animal and human diseases. Uniquely, replication of the RNA genome proceeds through the generation of a nested set of viral mRNA molecules. Human coronavirus (HCoV) infection causes respiratory diseases with mild to severe outcomes. In the last 15 years, we have witnessed the emergence of two zoonotic, highly pathogenic HCoVs: severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV). Replication of HCoV is regulated by a diversity of host factors and induces drastic alterations in cellular structure and physiology. In this review all (as we possible) information about Corona viruses are given. Keywords: Corona virus, respiratory, viruses, Hcov, host, RNA.


Author(s):  
Shane Miersch ◽  
Mart Ustav ◽  
Zhijie Li ◽  
James B. Case ◽  
Safder Ganaie ◽  
...  

ABSTRACTCoronaviruses (CoV) are a large family of enveloped, RNA viruses that circulate in mammals and birds. Three highly pathogenic strains have caused zoonotic infections in humans that result in severe respiratory syndromes including the Middle East Respiratory Syndrome CoV (MERS), Severe Acute Respiratory Syndrome CoV (SARS), and the ongoing Coronavirus Disease 2019 (COVID-19) pandemic. Here, we describe a panel of synthetic monoclonal antibodies, built on a human IgG framework, that bind to the spike protein of SARS-CoV-2 (the causative agent of COVID-19), compete for ACE2 binding, and potently inhibit SARS-CoV-2. All antibodies that exhibited neutralization potencies at sub-nanomolar concentrations against SARS-CoV-2/USA/WA1 in Vero E6 cells, also bound to the receptor binding domain (RBD), suggesting competition for the host receptor ACE2. These antibodies represent strong immunotherapeutic candidates for treatment of COVID-19.


2009 ◽  
Vol 364 (1530) ◽  
pp. 2725-2737 ◽  
Author(s):  
Ying Ma ◽  
Youjun Feng ◽  
Di Liu ◽  
George F. Gao

The outbreak and spread of severe acute respiratory syndrome-associated coronavirus and the subsequent identification of its animal origin study have heightened the world's awareness of animal-borne or zoonotic pathogens. In addition to SARS, the highly pathogenic avian influenza virus (AIV), H5N1, and the lower pathogenicity H9N2 AIV have expanded their host ranges to infect human beings and other mammalian species as well as birds. Even the ‘well-known’ reservoir animals for influenza virus, migratory birds, became victims of the highly pathogenic H5N1 virus. Not only the viruses, but bacteria can also expand their host range: a new disease, streptococcal toxic shock syndrome, caused by human Streptococcus suis serotype 2 infection, has been observed in China with 52 human fatalities in two separate outbreaks (1998 and 2005, respectively). Additionally, enterohaemorrhagic Escherichia coli O157:H7 infection has increased worldwide with severe disease. Several outbreaks and sporadic isolations of this pathogen in China have made it an important target for disease control. A new highly pathogenic variant of porcine reproductive and respiratory syndrome virus (PRRSV) has been isolated in both China and Vietnam recently; although PRRSV is not a zoonotic human pathogen, its severe outbreaks have implications for food safety. All of these pathogens occur in Southeast Asia, including China, with severe consequences; therefore, we discuss the issues in this article by addressing the situation of the zoonotic threat in China.


Sign in / Sign up

Export Citation Format

Share Document