scholarly journals Acute Limonene Toxicity in Escherichia coli Is Caused by Limonene Hydroperoxide and Alleviated by a Point Mutation in Alkyl Hydroperoxidase AhpC

2015 ◽  
Vol 81 (14) ◽  
pp. 4690-4696 ◽  
Author(s):  
Victor Chubukov ◽  
Florence Mingardon ◽  
Wendy Schackwitz ◽  
Edward E. K. Baidoo ◽  
Jorge Alonso-Gutierrez ◽  
...  

ABSTRACTLimonene, a major component of citrus peel oil, has a number of applications related to microbiology. The antimicrobial properties of limonene make it a popular disinfectant and food preservative, while its potential as a biofuel component has made it the target of renewable production efforts through microbial metabolic engineering. For both applications, an understanding of microbial sensitivity or tolerance to limonene is crucial, but the mechanism of limonene toxicity remains enigmatic. In this study, we characterized a limonene-tolerant strain ofEscherichia coliand found a mutation inahpC, encoding alkyl hydroperoxidase, which alleviated limonene toxicity. We show that the acute toxicity previously attributed to limonene is largely due to the common oxidation product limonene hydroperoxide, which forms spontaneously in aerobic environments. The mutant AhpC protein with an L-to-Q change at position 177 (AhpCL177Q) was able to alleviate this toxicity by reducing the hydroperoxide to a more benign compound. We show that the degree of limonene toxicity is a function of its oxidation level and that nonoxidized limonene has relatively little toxicity to wild-typeE. colicells. Our results have implications for both the renewable production of limonene and the applications of limonene as an antimicrobial.

2019 ◽  
Vol 63 (12) ◽  
Author(s):  
Hee-Chang Jang ◽  
Yin Wang ◽  
Chunhui Chen ◽  
Laura Vinué ◽  
George A. Jacoby ◽  
...  

ABSTRACT qnr genes are found in aquatic bacteria and were present in the bacterial community before the introduction of synthetic quinolones. Their natural functions are unknown. We evaluated expression of chromosomal qnr in Vibrio species in response to environmental stresses and DNA-damaging agents. Subinhibitory concentrations of quinolones, but not other DNA-damaging agents, increased expression of chromosomal qnr by more than five times in Vibrio parahaemolyticus, Vibrio vulnificus, and Vibrio mytili. Cold shock also induced expression of qnr in V. parahaemolyticus, V. vulnificus, and V. mytili, as well as expression of qnrS1 in Escherichia coli. qnrS1 induction by cold shock was not altered in ΔihfA or ΔihfB mutants or in a strain overexpressing dnaA, all of which otherwise directly modulate qnrS1 induction by ciprofloxacin. In contrast, the level of qnrS1 induction by cold shock was reduced in a ΔcspA mutant in the cold shock regulon compared to the wild type. In conclusion, cold shock and quinolones induce expression of chromosomal qnr in Vibrio species and of the related qnrS1 gene in E. coli.


2013 ◽  
Vol 80 (3) ◽  
pp. 935-942 ◽  
Author(s):  
Michael B. Fisher ◽  
Kara L. Nelson

ABSTRACTSunlight inactivation ofEscherichia colihas previously been shown to accelerate in the presence of oxygen, exogenously added hydrogen peroxide, and bioavailable forms of exogenously added iron. In this study, mutants unable to effectively scavenge hydrogen peroxide or superoxide were found to be more sensitive to polychromatic simulated sunlight (without UVB wavelengths) than wild-type cells, while wild-type cells grown under low-iron conditions were less sensitive than cells grown in the presence of abundant iron. Furthermore, prior exposure to simulated sunlight was found to sensitize cells to subsequent hydrogen peroxide exposure in the dark, but this effect was attenuated for cells grown with low iron. Mutants deficient in recombination DNA repair were sensitized to simulated sunlight (without UVB wavelengths), but growth in the presence of iron chelators reduced the degree of sensitization conferred by this mutation. These findings support the hypothesis that hydrogen peroxide, superoxide, and intracellular iron all participate in the photoinactivation ofE. coliand further suggest that the inactivation rate of enteric bacteria in the environment may be strongly dependent on iron availability and growth conditions.


2017 ◽  
Vol 83 (21) ◽  
Author(s):  
Haoshu Zhang ◽  
Edward G. Dudley ◽  
Federico Harte

ABSTRACT In this study, the effect of individual lecithin phospholipids on the antimicrobial properties of eugenol against Escherichia coli C600 was investigated. We tested five major phospholipids common in soy or egg lecithin (1,2-dihexadecanoyl-sn-glycero-3-phosphocholine [DPPC], 1,2-dioctadecanoyl-sn-glycero-3-phosphocholine [DSPC], 1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine [DPPE], 1,2-dihexadecanoyl-sn-glycero-3-phosphate [sodium salt] [DPPA], and 1,2-dihexadecanoyl-sn-glycero-3-phospho-l-serine [DPPS]) and one synthetic cationic phospholipid (1,2-dioctadecanoyl-sn-glycero-3-ethylphosphocholine [18:0 EPC]). Among the six phospholipids, DPPC, DSPC, DPPE, DPPA, and the cationic 18:0 EPC showed critical synergistic concentrations that significantly improved the inactivation effect of eugenol against E. coli after 30 min of exposure. At the critical synergistic concentration, an additional ca. 0.4 to 1.9 log reduction (ca. 0.66 to 2.17 log CFU/ml reduction) in the microbial population was observed compared to eugenol-only (control) treatments (ca. 0.25 log reduction). In all cases, increasing the phospholipid amount above the critical synergistic concentration (which was different for each phospholipid) resulted in antimicrobial properties similar to those seen with the eugenol-only (control) treatments. DPPS did not affect the antimicrobial properties of eugenol at the tested concentrations. The critical synergistic concentration of phospholipids was correlated with their critical micelle concentrations (CMC). IMPORTANCE Essential oils (EOs) are naturally occurring antimicrobials, with limited use in food due to their hydrophobicity and strong aroma. Lecithin is used as a natural emulsifier to stabilize EOs in aqueous systems. We previously demonstrated that, within a narrow critical-concentration window, lecithin can synergistically enhance the antimicrobial properties of eugenol. Since lecithin is a mixture of different phospholipids, we aimed to identify which phospholipids are crucial for the observed synergistic effect. This research studied the bioactivity of lecithin phospholipids, contributing to a rational design in using lecithin to effectively control foodborne pathogens in foods.


2015 ◽  
Vol 60 (3) ◽  
pp. 1556-1559 ◽  
Author(s):  
Ramzi Fattouh ◽  
Nathalie Tijet ◽  
Allison McGeer ◽  
Susan M. Poutanen ◽  
Roberto G. Melano ◽  
...  

Infection with carbapenemase-producingEnterobacteriaceae(CPE) has been shown to cause significant illness among hospitalized patients. Given the paucity of treatment options, there is a critical need to stop the spread of CPE. However, screening for the presence of CPE in laboratory settings has been challenging. In order to assess the effectiveness of current CPE detection guidelines, we analyzed the meropenem MIC distribution for a large set of clinicalEnterobacteriaceaeisolates. A total of 1,022 isolates submitted to the Public Health Ontario Laboratories (PHOL) from January 2011 to March 2014 were examined. Only isolates displaying a meropenem or ertapenem MIC of ≥0.25 or ≥1 μg/ml, respectively, were included. Carbapenemase-positive isolates were identified by multiplex PCR. We identified 189 isolates positive for carbapenemases, which primarily comprised NDM, KPC, and OXA-48-like carbapenemases, and these isolates were largelyKlebsiellaspp.,Escherichia coli, andEnterobacterspp. Interestingly, 14 to 20% of these isolates displayed meropenem MICs within the susceptible range on the basis of CLSI and EUCAST breakpoint interpretive criteria. While the majority of meropenem-susceptible CPE isolates were observed to beE. coli, meropenem susceptibility was not exclusive to any one species/genus or carbapenemase type. Application of CLSI screening recommendations captured only 86% of carbapenemase-producing isolates, whereas application of EUCAST recommendations detected 98.4% of CPE isolates. In a region with a low carbapenemase prevalence, meropenem-based screening approaches require a cutoff MIC near the epidemiological wild-type threshold in order to achieve nearly optimal CPE identification.


2011 ◽  
Vol 78 (2) ◽  
pp. 411-419 ◽  
Author(s):  
Weihua Chu ◽  
Tesfalem R. Zere ◽  
Mary M. Weber ◽  
Thomas K. Wood ◽  
Marvin Whiteley ◽  
...  

ABSTRACTIndole production byEscherichia coli, discovered in the early 20th century, has been used as a diagnostic marker for distinguishingE. colifrom other enteric bacteria. By using transcriptional profiling and competition studies with defined mutants, we show that cyclic AMP (cAMP)-regulated indole formation is a major factor that enablesE. coligrowth in mixed biofilm and planktonic populations withPseudomonas aeruginosa. Mutants deficient in cAMP production (cyaA) or the cAMP receptor gene (crp), as well as indole production (tnaA), were not competitive in coculture withP. aeruginosabut could be restored to wild-type competitiveness by supplementation with a physiologically relevant indole concentration.E. colisdiAmutants, which lacked the receptor for both indole andN-acyl-homoserine lactones (AHLs), showed no change in competitive fitness, suggesting that indole acted directly onP. aeruginosa. AnE. colitnaAmutant strain regained wild-type competiveness if grown withP. aeruginosaAHL synthase (rhlIandrhlI lasI) mutants. In contrast to the wild type,P. aeruginosaAHL synthase mutants were unable to degrade indole. Indole produced during mixed-culture growth inhibited pyocyanin production and other AHL-regulated virulence factors inP. aeruginosa. Mixed-culture growth withP. aeruginosastimulated indole formation inE. colicpdA, which is unable to regulate cAMP levels, suggesting the potential for mixed-culture gene activation via cAMP. These findings illustrate how indole, an early described feature ofE. colicentral metabolism, can play a significant role in mixed-culture survival by inhibiting quorum-regulated competition factors inP. aeruginosa.


2013 ◽  
Vol 81 (9) ◽  
pp. 3089-3098 ◽  
Author(s):  
Erica L. Raterman ◽  
Daniel D. Shapiro ◽  
Daniel J. Stevens ◽  
Kevin J. Schwartz ◽  
Rodney A. Welch

ABSTRACTDuring urinary tract infections (UTIs), uropathogenicEscherichia colimust maintain a delicate balance between sessility and motility to achieve successful infection of both the bladder and kidneys. Previous studies showed that cyclic dimeric GMP (c-di-GMP) levels aid in the control of the transition between motile and nonmotile states inE. coli. TheyfiRNBlocus inE. coliCFT073 contains genes for YfiN, a diguanylate cyclase, and its activity regulators, YfiR and YfiB. Deletion ofyfiRyielded a mutant that was attenuated in both the bladder and the kidneys when tested in competition with the wild-type strain in the murine model of UTI. A doubleyfiRNmutant was not attenuated in the mouse model, suggesting that unregulated YfiN activity and likely increased cytoplasmic c-di-GMP levels cause a survival defect. Curli fimbriae and cellulose production were increased in theyfiRmutant. Expression ofyhjH, a gene encoding a proven phosphodiesterase, in CFT073 ΔyfiRsuppressed the overproduction of curli fimbriae and cellulose and further verified that deletion ofyfiRresults in c-di-GMP accumulation. Additional deletion ofcsgDandbcsA, genes necessary for curli fimbriae and cellulose production, respectively, returned colonization levels of theyfiRdeletion mutant to wild-type levels. Peroxide sensitivity assays and iron acquisition assays displayed no significant differences between theyfiRmutant and the wild-type strain. These results indicate that dysregulation of c-di-GMP production results in pleiotropic effects that disableE. coliin the urinary tract and implicate the c-di-GMP regulatory system as an important factor in the persistence of uropathogenicE. coli in vivo.


2016 ◽  
Vol 60 (4) ◽  
pp. 2232-2240 ◽  
Author(s):  
Jun-Seob Kim ◽  
Da-Hyeong Cho ◽  
Paul Heo ◽  
Suk-Chae Jung ◽  
Myungseo Park ◽  
...  

ABSTRACTBacterial persisters are a small fraction of quiescent cells that survive in the presence of lethal concentrations of antibiotics. They can regrow to give rise to a new population that has the same vulnerability to the antibiotics as did the parental population. Although formation of bacterial persisters in the presence of various antibiotics has been documented, the molecular mechanisms by which these persisters tolerate the antibiotics are still controversial. We found that amplification of the fumarate reductase operon (FRD) inEscherichia coliled to a higher frequency of persister formation. The persister frequency ofE. coliwas increased when the cells contained elevated levels of intracellular fumarate. Genetic perturbations of the electron transport chain (ETC), a metabolite supplementation assay, and even the toxin-antitoxin-relatedhipA7mutation indicated that surplus fumarate markedly elevated theE. colipersister frequency. AnE. colistrain lacking succinate dehydrogenase (SDH), thereby showing a lower intracellular fumarate concentration, was killed ∼1,000-fold more effectively than the wild-type strain in the stationary phase. It appears thatSDHandFRDrepresent a paired system that gives rise to and maintainsE. colipersisters by producing and utilizing fumarate, respectively.


2014 ◽  
Vol 59 (1) ◽  
pp. 276-281 ◽  
Author(s):  
Alice Zhou ◽  
Tina Manzhu Kang ◽  
Jessica Yuan ◽  
Casey Beppler ◽  
Caroline Nguyen ◽  
...  

ABSTRACTGram-negative bacteria are normally resistant to the antibiotic vancomycin (VAN), which cannot significantly penetrate the outer membrane. We usedEscherichia colimutants that are partially sensitive to VAN to study synergies between VAN and 10 other antibiotics representing six different functional categories. We detected strong synergies with VAN and nitrofurantoin (NTR) and with VAN and trimethoprim (TMP) and moderate synergies with other drugs, such as aminoglycosides. These synergies are powerful enough to show the activity of VAN against wild-typeE. coliat concentrations of VAN as low as 6.25 μg/ml. This suggests that a very small percentage of exogenous VAN does enterE. colibut normally has insignificant effects on growth inhibition or cell killing. We used the results of pairwise interactions with VAN and the other 10 antibiotics tested to place VAN into a functional category of its own, as previously defined by Yeh et al. (P. Yeh, A. I. Tschumi, and R. Kishony, Nat Genet 28:489–494, 2006,http://dx.doi.org/10.1038/ng1755).


2011 ◽  
Vol 79 (12) ◽  
pp. 4753-4763 ◽  
Author(s):  
Rachel R. Spurbeck ◽  
Ann E. Stapleton ◽  
James R. Johnson ◽  
Seth T. Walk ◽  
Thomas M. Hooton ◽  
...  

ABSTRACTEscherichia coli, a cause of ∼90% of urinary tract infections (UTI), utilizes fimbrial adhesins to colonize the uroepithelium. Pyelonephritis isolateE. coliCFT073 carries 12 fimbrial operons, 5 of which have never been studied. Using multiplex PCR, the prevalence of these 12 and 3 additional fimbrial types was determined for a collection of 303E. coliisolates (57 human commensal, 32 animal commensal, 54 asymptomatic bacteriuria, 45 complicated UTI, 38 uncomplicated cystitis, and 77 pyelonephritis). The number of fimbrial types perE. coliisolate was distributed bimodally: those with low (3.2 ± 1.1) and those with high (8.3 ± 1.3) numbers of fimbrial types (means ± standard errors of the means). The fimbrial genesygiL,yadN,yfcV, andc2395were significantly more prevalent among urine isolates than human commensal isolates. The effect of deletion of Ygi and Yad fimbrial operons on growth, motility, biofilm formation, adherence to immortalized human epithelial cells, and pathogenesis in the mouse model of UTI was examined. Yad fimbriae were necessary for wild-type levels of adherence to a bladder epithelial cell line and for biofilm formation. Deletion of these fimbrial genes increased motility. Ygi fimbriae were necessary for wild-type levels of adherence to a human embryonic kidney cell line, biofilm formation, andin vivofitness in the urine and kidneys. Complementation of each fimbrial mutant restored wild-type levels of motility, biofilm formation, adherence and, forygi,in vivofitness. A double deletion strain, Δygi Δyad, was attenuated in the urine, bladder, and kidneys in the mouse model, demonstrating that these fimbriae contribute to uropathogenesis.


2019 ◽  
Vol 63 (6) ◽  
Author(s):  
S. J. Ryan Arends ◽  
Paul R. Rhomberg ◽  
Nicole Cotroneo ◽  
Aileen Rubio ◽  
Robert K. Flamm ◽  
...  

ABSTRACT The antimicrobial activity of tebipenem and other carbapenem agents were tested in vitro against a set of recent clinical isolates responsible for urinary tract infection (UTI), as well as against a challenge set. Isolates were tested by reference broth microdilution and included Escherichia coli (101 isolates), Klebsiella pneumoniae (208 isolates), and Proteus mirabilis (103 isolates) species. Within each species tested, tebipenem showed equivalent MIC50/90 values to those of meropenem (E. coli MIC50/90, ≤0.015/0.03 mg/liter; K. pneumoniae MIC50/90, 0.03/0.06 mg/liter; and P. mirabilis MIC50/90, 0.06/0.12 mg/liter) and consistently displayed MIC90 values 8-fold lower than imipenem. Tebipenem and meropenem (MIC50, 0.03 mg/liter) showed equivalent MIC50 results against wild-type, AmpC-, and/or extended-spectrum β-lactamase (ESBL)-producing isolates. Tebipenem also displayed MIC50/90 values 4- to 8-fold lower than imipenem against the challenge set. All carbapenem agents were less active (MIC50, ≥8 mg/liter) against isolates carrying carbapenemase genes. These data confirm the in vitro activity of the orally available agent tebipenem against prevalent UTI Enterobacteriaceae species, including those producing ESBLs and/or plasmid AmpC enzymes.


Sign in / Sign up

Export Citation Format

Share Document