scholarly journals Transmission of Yersinia pseudotuberculosis in the Pork Production Chain from Farm to Slaughterhouse

2008 ◽  
Vol 74 (17) ◽  
pp. 5444-5450 ◽  
Author(s):  
Riikka Laukkanen ◽  
Pilar Ortiz Martínez ◽  
Kirsi-Maarit Siekkinen ◽  
Jukka Ranta ◽  
Riitta Maijala ◽  
...  

ABSTRACT The transmission of Yersinia pseudotuberculosis in the pork production chain was followed from farm to slaughterhouse by studying the same 364 pigs from different production systems at farm and slaughterhouse levels. In all, 1,785 samples were collected, and the isolated Y. pseudotuberculosis strains were analyzed by pulsed-field gel electrophoresis. The results of microbial sampling were combined with data from an on-farm observation and questionnaire study to elucidate the associations between farm factors and the prevalence of Y. pseudotuberculosis. Following the same pigs in the production chain from farm to slaughterhouse, we were able to show similar Y. pseudotuberculosis genotypes in live animals, pluck sets (containing tongue, tonsils, esophagus, trachea, heart, lungs, diaphragm, liver, and kidneys), and carcasses and to conclude that Y. pseudotuberculosis contamination originates from the farms, is transported to slaughterhouses with pigs, and transfers to pluck sets and carcasses in the slaughter process. The study also showed that the high prevalence of Y. pseudotuberculosis in live pigs predisposes carcasses and pluck sets to contamination. When production types and capacities were compared, the prevalence of Y. pseudotuberculosis was higher in organic production than in conventional production and on conventional farms with high rather than low production capacity. We were also able to associate specific farm factors with the prevalence of Y. pseudotuberculosis by using a questionnaire and on-farm observations. On farms, contact with pest animals and the outside environment and a rise in the number of pigs on the farm appear to increase the prevalence of Y. pseudotuberculosis.

2010 ◽  
Vol 73 (4) ◽  
pp. 641-648 ◽  
Author(s):  
SANNA HELLSTRÖM ◽  
RIIKKA LAUKKANEN ◽  
KIRSI-MAARIT SIEKKINEN ◽  
JUKKA RANTA ◽  
RIITTA MAIJALA ◽  
...  

The presence of Listeria monocytogenes in the pork production chain was followed from farm to slaughterhouse by examining the farm and slaughterhouse levels in the same 364 pigs, and finally by analyzing the cut meats from the same pig lots. Both organic and conventional farms were included in the study. Altogether, 1,962 samples were collected, and the 424 L. monocytogenes isolates were analyzed by pulsed-field gel electrophoresis. The results from microbial analyses were combined with data from an on-farm observation and a questionnaire to clarify the associations between farm factors and prevalence of L. monocytogenes. The prevalence of L. monocytogenes was 11, 1, 1, 24, 5, 1, and 4% in feed and litter, rectal swabs, intestinal contents, tonsils, pluck sets (including lungs, heart, liver, and kidney), carcasses, and meat cuts, respectively. The prevalence was significantly higher in organic than in conventional pig production at the farm and slaughterhouse level, but not in meat cuts. Similar L. monocytogenes genotypes were recovered in different steps of the production chain in pigs originating from the same farm. Specific farm management factors, i.e., large group size, contact with pet and pest animals, manure treatment, use of coarse feed, access to outdoor area, hygiene practices, and drinking from the trough, influenced the presence of L. monocytogenes in pigs. L. monocytogenes was present in the production chain, and transmission of the pathogen was possible throughout the chain, from the farm to pork. Good farm-level practices can therefore be utilized to reduce the prevalence of this pathogen.


2006 ◽  
Vol 69 (4) ◽  
pp. 743-748 ◽  
Author(s):  
WONDWOSSEN A. GEBREYES ◽  
SIDDHARTHA THAKUR ◽  
W. E. MORGAN MORROW

Conventional swine production evolved to routinely use antimicrobials, and common occurrence of antimicrobial-resistant Salmonella has been reported. There is a paucity of information on the antimicrobial resistance of Salmonella in swine production in the absence of antimicrobial selective pressure. Therefore, we compared the prevalence and antimicrobial resistance of Salmonella isolated from antimicrobial-free and conventional production systems. A total of 889 pigs and 743 carcasses were sampled in the study. Salmonella prevalence was significantly higher among the antimicrobial-free systems (15.2%) than the conventional systems (4.2%) (odds ratio [OR] = 4.23; P < 0.05). Antimicrobial resistance was detected against 10 of the 12 antimicrobials tested. The highest frequency of resistance was found against tetracycline (80%), followed by streptomycin (43.4%) and sulfamethoxazole (36%). Frequency of resistance to most classes of antimicrobials (except tetracycline) was significantly higher among conventional farms than antimicrobial-free farms, with ORs ranging from 2.84 for chloramphenicol to 23.22 for kanamycin at the on-farm level. A total of 28 antimicrobial resistance patterns were detected. A resistance pattern with streptomycin, sulfamethoxazole, and tetracycline (n = 130) was the most common multidrug resistance pattern. There was no significant difference in the proportion of isolates with this pattern between the conventional (19.5%) and the antimicrobial-free systems (18%) (OR = 1.8; P > 0.05). A pentaresistance pattern with ampicillin, chloramphenicol, streptomycin, sulfamethoxazole, and tetracycline was strongly associated with antimicrobial-free groups (OR = 5.4; P = 0.01). While showing the higher likelihood of finding antimicrobial resistance among conventional herds, this study also implies that specific multidrug-resistant strains may occur on antimicrobial-free farms. A longitudinal study with a representative sample size is needed to reach more conclusive results of the associations detected in this study.


2018 ◽  
Vol 183 (6) ◽  
pp. 192-192 ◽  
Author(s):  
Fernanda M Tahamtani ◽  
Lena K Hinrichsen ◽  
Anja B Riber

The aim of this study was to survey and report the walking ability in broilers housed in both conventional and organic production systems in Denmark. To this end, the authors assessed the walking ability, by using the Bristol scale, in 31 conventional broiler flocks and in 29 organic broiler flocks distributed across Denmark. In addition, assessment of contact dermatitis, leg abnormalities, scratches and plumage cleanliness, as well as postmortem analysis of tibial dyschondroplasia, was performed in conventional broilers. The survey found a prevalence of 77.4 per cent of impaired walking ability (gait score (GS) >0) in conventional broilers and 38.1 per cent in organic broilers. The prevalence of severe lameness (GS >2) was 5.5 per cent and 2.5 per cent for conventional and organic broilers, respectively. The prevalence of tibial dyschondroplasia in conventional broilers was 4.7 per cent. The results on other welfare indicators are also presented for conventional broilers. The results from the present and previous surveys indicate that the prevalence of impaired walking ability in broiler chickens in the Danish conventional production system is high, but the severity has been steadily decreasing over the last 19 years. Furthermore, the results from the survey of organic broilers suggest that lameness is less prevalent and severe in this system relative to conventional production.


2009 ◽  
Vol 89 (6) ◽  
pp. 1089-1097 ◽  
Author(s):  
J M Baird ◽  
S J Shirtliffe ◽  
F L Walley

Organic lentil (Lens culinaris Medik.) producers must rely upon the recommended rate for conventional production of 130 plants m-2, but this seeding rate may not be suitable, as organic and conventional production systems differ in management and inputs. The objective of this study was to determine an optimal seeding rate for organic production of lentil considering a number of factors, including yield, weed suppression, soil nitrogen and phosphorus concentrations, plant uptake of phosphorus, and economic return. A field experiment was conducted for 4 site-years at locations near Saskatoon, SK. Treatments included seeding rates of 15, 38, 94, 235 and 375 seeds m-2. Seed yield increased with increasing seeding rate up to 1290 kg ha-1. Weed biomass was reduced by 59% at the highest seeding rate as compared with the lowest seeding rate. Post-harvest soil phosphorus and nitrogen levels were similar between seeding rate treatments. Economic return was maximized at $952 ha-1 at the highest density of 229 plants m-2, achieved with a seeding rate of 375 seeds m-2. Organic farmers should increase the seeding rate of lentil to achieve a plant density of 229 plants m-2 to increase profitability and provide better weed suppression.Key words: Lentil, organic, seeding rate, weed suppression, economic return


PLoS ONE ◽  
2020 ◽  
Vol 15 (11) ◽  
pp. e0242495
Author(s):  
Shilpi Misra ◽  
Corina E. van Middelaar ◽  
Kieran Jordan ◽  
John Upton ◽  
Amy J. Quinn ◽  
...  

Pork is one of the most globally eaten meats and the pig production chain contributes significantly to the water footprint of livestock production. However, very little knowledge is available about the on-farm factors that influence freshwater use in the pig production chain. An experiment was conducted to quantify the effect of three different washing treatments on freshwater use, bacterial levels [(total bacterial counts; TBC), Enterobacteriaceae and Staphylococcus] and cleaning time in washing of pens for weaning pigs. Three weaner rooms were selected with each room having 10 pens and a capacity to hold up to 14 pigs each. Pigs were weaned and kept in the pens for 7 weeks. Finally, the pens were cleaned before the next batch of pigs moved in. The washing treatments used were power washing and disinfection (WASH); presoaking followed by power washing and disinfection (SOAK), and presoaking followed by detergent, power washing and disinfection (SOAK + DETER). A water meter was used to collect water use data and swab samples were taken to determine the bacterial levels. The results showed that there was no overall effect of washing treatments on water use. However, there was an effect of treatment on the washing time (p<0.01) with SOAK and SOAK+DETER reducing the washing time per pen by 2.3 minutes (14%) and 4.2 minutes (27%) compared to WASH. Nonetheless, there was an effect of sampling time (before or after washing) (p<0.001) on the levels of TBC and Staphylococcus, but no effect was seen on Enterobacteriaceae levels. Thus, the washing treatments used in this study had no effect on the water use of the pork production chain. Although there was no difference in both water use and bacterial load, from a producer perspective, presoaking and detergent use can save time and labour costs, so this would be the preferred option.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Sochinwechi Nwosisi ◽  
Prabodh Illukpitiya ◽  
Dilip Nandwani ◽  
Ismail Tubosun Arebi ◽  
Obinna Nwosisi

Abstract Background There has been a piqued interest in alternative agricultural production systems that are environmentally friendly due to concerns on how sustainable it is to grow conventionally. However, in the producer’s point of view, economic returns are an important issue in decision-making in adaptation. The purpose of this study is to assess the economic risk of conventional and organic sweetpotato production in the Southeastern US. The primary and secondary data were used for the analysis. We identified risk variables in stochastic profit function and performed Monte Carlo simulation in analyzing profitability and economic risk of conventional and organic production systems. Results Findings from the meta-analysis suggest lower sweetpotato yields and higher selling prices, are to be expected in the organic sweetpotato production systems compared with the conventional. A higher probability of having positive net return from organically grown sweetpotato compared to conventional production systems was observed. Conclusions Increase in unit cost leads to a decrease in net profit in both conventional and organic production systems. Sweetpotato price has more effect on net return compared to its yield in conventional production systems. The higher selling price, lower yield and lower unit costs provide a higher net profit return for the organic sweetpotato production systems. Unit cost in conventional production was noted to be higher in general, inferring conventional sweetpotato production could potentially experience a higher variability in net farm income. Despite the high production cost, however, farmers are encouraged to go into sweetpotato production as it appears to be profitable. Further studies should be conducted on conventional treatments without synthetic pesticides and fertilizers as these systems perhaps, may display lower external input costs that might make them more profitable similar to organic systems.


2020 ◽  
Vol 38 (1) ◽  
pp. 53-57
Author(s):  
Carlos Francisco Ragassi ◽  
Agnaldo DF de Carvalho ◽  
Giovani Olegário da Silva ◽  
Gabriel Emiliano Pereira ◽  
Arione da S Pereira

ABSTRACT Potato is responsive to intensive agricultural input use; however, it can be produced in less intensive production systems (such as the organic system) by using appropriate production techniques and genotypes adapted to this system. This study aimed to evaluate the performance of advanced potato genotypes for tuber yield under conventional and organic production systems, in order to select potential genotypes to become new cultivars adapted to these systems. Fifteen advanced potato clones and two controls were evaluated under organic and conventional production systems, in 2016 and 2017, in Brasília-DF, Brazil. The experimental design was randomized blocks with three replicates and plots composed of two rows with 10 plants each, spaced 0.35 m between plants and 0.80 m between rows. Total (mass) and marketable (mass and number of tubers) productivities were evaluated. Variance analysis showed significant differences among genotypes for all traits. Despite the lower average tuber yield in the organic system, selecting genotypes with high potential productivity was possible in this system, such as F158-08-01 and F158-08-02, showing high marketable tuber yield, with values equivalent to the conventional system. Clones F102-08-04, F13-09-07, F-18-09-03, F-183-08-01, F-21-09-07, F31-08-05, F63-10-07 and F97-07-03 also outperformed the control cultivars in organic system. For conventional system, F158-08-01, F158-08-02 and F183-08-01 were superior, and F18-09-03, F21-09-07, F63-10-07, F97-07-03, PCDINV10 and PCDSE090 showed performance similar or superior to the most productive control (cultivar Asterix). Genotypes F158-08-01 and F158-08-02 were superior in both conventional and organic systems, with potential to become new cultivars recommended for both production systems.


2017 ◽  
Vol 145 (8) ◽  
pp. 1513-1526 ◽  
Author(s):  
S. BONARDI

SUMMARYSalmonellaspp. comprise the second most common food-borne pathogens in the European Union (EU). The role of pigs as carriers ofSalmonellahas been intensively studied both on farm and at slaughter.Salmonellainfection in pigs may cause fever, diarrhoea, prostration and mortality. However, most infected pigs remain healthy carriers, and those infected at the end of the fattening period could pose a threat to human health. Contamination of pig carcasses can occur on the slaughter line, and it is linked to cross-contamination from other carcasses and the presence ofSalmonellain the environment. Therefore,Salmonellaserovars present on pig carcasses can be different from those detected in the same bathes on the farm. In recent years,S.Typhimurium,S.Derby andS.serotype 4,[5],12:i:- (a monophasic variant ofS.Typhimurium) have been the most common serovars to be detected in pigs in EU countries, butS.Rissen,S.Infantis,S.Enteritidis andS.Brandenburg have also been reported. In humans, several cases of salmonellosis have been linked to the consumption of raw or undercooked pork and pork products. Among the main serovars of porcine origin detected in confirmed human cases,S.Typhimurium, the monophasic variantS.4,[5],12:i:- andS.Derby are certainly the most important.


Plant Disease ◽  
2018 ◽  
Vol 102 (9) ◽  
pp. 1766-1771 ◽  
Author(s):  
Chaitra S. Subbarao ◽  
Amy Anchieta ◽  
Lorena Ochoa ◽  
Nikhilesh Dhar ◽  
Sridhara G. Kunjeti ◽  
...  

Downy mildew disease of spinach, caused by Peronospora effusa, is managed in conventional fields by a combination of host resistance and scheduled fungicide applications. Fungicides are currently applied to prevent downy mildew epidemics regardless of the infection status of spinach crops. A more streamlined approach would be to develop methods to target either latent infections for fungicide application in conventional production systems or to hasten harvest in organic production. In this study, conventional polymerase chain reaction (PCR) was applied to detect P. effusa DNA in symptomless spinach leaves in three spatially and temporally separated field plots, each containing four 2-m beds, 35 m in length. Spinach leaves were sampled weekly at 3-m intervals at 48 locations throughout each plot. Initial samples were asymptomatic and yet PCR enabled detection of P. effusa DNA extracted from sampled spinach leaves. Detection of latent downy mildew infection in spinach leaves was confirmed by PCR as early as 7 days prior to symptom development. The limit of pathogen DNA detection in spinach leaves was calculated at 10 pg using the conventional PCR approach. Quantitative PCR with TaqMan methodology revealed the presence of inhibitors from spinach leaf DNA extracts and affected amplification efficiencies, but not when diluted, enabling detection of P. effusa DNA at a concentration of <0.1 pg. In conclusion, detection of latent infections may enable management decisions for earlier-than-normal harvest of infected, symptomless organic crops, and for timing fungicide applications on symptomless plants in conventional production.


2020 ◽  
Vol 12 (10) ◽  
pp. 4271
Author(s):  
Amritbir Riar ◽  
Lokendra S. Mandloi ◽  
Ramadas Sendhil ◽  
Randhir S. Poswal ◽  
Monika M. Messmer ◽  
...  

Cotton is essentially a smallholder crop across tropical countries. Being a major cash crop, it plays a decisive role in the livelihoods of cotton-producing farmers. Both conventional and organic production systems offer alternative yet interesting propositions to cotton farmers. This study was conducted in Nimar valley, a prominent cotton-producing region of central India, with the aim of categorically evaluating the contribution of management and fixed factors to productivity on conventional and organic cotton farms. A study framework was developed considering the fixed factors, which cannot be altered within reasonable limits of time, capacity and resources, e.g., landholding or years of age and/or practice; and management factors, which can be altered/influenced within a reasonable time by training, practice and implementation. Using this framework, a structured survey of conventional and organic farms operating under comparable circumstances was conducted. Landholding and soil types were significant contributors/predictors of yield on organic farms. In contrast, landholding was not the main factor related to yields on conventional farms, which produced the highest yields when led by farmers with more than five years of formal education and living in a joint family. Nitrogen application, the source of irrigation (related to timely and adequate supply), crop rotation and variables related to adequate plant population (seed source, germination rate and plant thinning) were the main management factors limiting cotton yields among conventional and organic farms. Both organic and conventional farms in the Nimar valley exhibited a similar pattern of variation in cotton yields and technical efficiency. This study highlights the enormous scope for improving cotton productivity in the region by improving technical efficiency, strengthening extension services and making appropriate policy interventions.


Sign in / Sign up

Export Citation Format

Share Document