scholarly journals dl-2-Hydroxyisocaproic Acid Attenuates Inflammatory Responses in a Murine Candida albicans Biofilm Model

2014 ◽  
Vol 21 (9) ◽  
pp. 1240-1245 ◽  
Author(s):  
M. T. Nieminen ◽  
M. Hernandez ◽  
L. Novak-Frazer ◽  
H. Kuula ◽  
G. Ramage ◽  
...  

ABSTRACTChronic biofilm infections are often accompanied by a chronic inflammatory response, leading to impaired healing and increased, irreversible damage to host tissues. Biofilm formation is a major virulence factor forCandida albicansand a challenge for treatment. Most current antifungals have proved ineffective in eradicating infections attributed to biofilms. The biofilm structure protectsCandidaspecies against antifungals and provides a way for them to evade host immune systems. This leads to a very distinct inflammatory response compared to that seen in planktonic infections. Previously, we showed the superior efficacy ofdl-2-hydroxyisocaproic acid (HICA) against various bacteria and fungi. However, the immunomodulatory properties of HICA have not been studied. Our aim was to investigate the potential anti-inflammatory response to HICAin vivo. We hypothesized that HICA reduces the levels of immune mediators and attenuates the inflammatory response. In a murine model, a robust biofilm was formed for 5 days in a diffusion chamber implanted underneath mouse skin. The biofilm was treated for 12 h with HICA, while caspofungin and phosphate-buffered saline (PBS) were used as controls. The pathophysiology and immunoexpression in the tissues surrounding the chamber were determined by immunohistochemistry. Histopathological examination showed an attenuated inflammatory response together with reduced expression of matrix metalloproteinase 9 (MMP-9) and myeloperoxidase (MPO) compared to those of chambers containing caspofungin and PBS. Interestingly, the expression of developmental endothelial locus 1 (Del-1), an antagonist of neutrophil extravasation, increased after treatment with HICA. Considering its anti-inflammatory and antimicrobial activity, HICA may have enormous therapeutic potential in the treatment of chronic biofilm infections and inflammation, such as those seen with chronic wounds.

Biomedicines ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 615
Author(s):  
Shang-En Huang ◽  
Erna Sulistyowati ◽  
Yu-Ying Chao ◽  
Bin-Nan Wu ◽  
Zen-Kong Dai ◽  
...  

Osteoarthritis is a degenerative arthropathy that is mainly characterized by dysregulation of inflammatory responses. KMUP-1, a derived chemical synthetic of xanthine, has been shown to have anti-inflammatory and antioxidant properties. Here, we aimed to investigate the in vitro anti-inflammatory and in vivo anti-osteoarthritis effects of KMUP-1. Protein and gene expressions of inflammation markers were determined by ELISA, Western blotting and microarray, respectively. RAW264.7 mouse macrophages were cultured and pretreated with KMUP-1 (1, 5, 10 μM). The productions of TNF-α, IL-6, MMP-2 and MMP- 9 were reduced by KMUP-1 pretreatment in LPS-induced inflammation of RAW264.7 cells. The expressions of iNOS, TNF-α, COX-2, MMP-2 and MMP-9 were also inhibited by KMUP-1 pretreatment. The gene expression levels of TNF and COX families were also downregulated. In addition, KMUP-1 suppressed the activations of ERK, JNK and p38 as well as phosphorylation of IκBα/NF-κB signaling pathways. Furthermore, SIRT1 inhibitor attenuated the inhibitory effect of KMUP-1 in LPS-induced NF-κB activation. In vivo study showed that KMUP-1 reduced mechanical hyperalgesia in monoiodoacetic acid (MIA)-induced rats OA. Additionally, KMUP-1 pretreatment reduced the serum levels of TNF-α and IL-6 in MIA-injected rats. Moreover, macroscopic and histological observation showed that KMUP-1 reduced articular cartilage erosion in rats. Our results demonstrated that KMUP-1 inhibited the inflammatory responses and restored SIRT1 in vitro, alleviated joint-related pain and cartilage destruction in vivo. Taken together, KMUP-1 has the potential to improve MIA-induced articular cartilage degradation by inhibiting the levels and expression of inflammatory mediators suggesting that KMUP-1 might be a potential therapeutic agent for OA.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Deok Jeong ◽  
Jaehwi Lee ◽  
Young-Su Yi ◽  
Yanyan Yang ◽  
Kyoung Won Kim ◽  
...  

Electrical stimulation with a weak current has been demonstrated to modulate various cellular and physiological responses, including the differentiation of mesenchymal stem cells and acute or chronic physical pain. Thus, a variety of investigations regarding the physiological role of nano- or microlevel currents at the cellular level are actively proceeding in the field of alternative medicine. In this study, we focused on the anti-inflammatory activity of aluminum-copper patches (ACPs) under macrophage-mediated inflammatory conditions. ACPs generated nanolevel currents ranging from 30 to 55 nA in solution conditions. Interestingly, the nanocurrent-generating aluminum-copper patches (NGACPs) were able to suppress both lipopolysaccharide-(LPS-) and pam3CSK-induced inflammatory responses such as NO and PGE2production in both RAW264.7 cells and peritoneal macrophages at the transcriptional level. Through immunoblotting and immunoprecipitation analyses, we found that p38/AP-1 could be the major inhibitory pathway in the NGACP-mediated anti-inflammatory response. Indeed, inhibition of p38 by SB203580 showed similar inhibitory activity of the production of TNF-αand PGE2and the expression of TNF-αand COX-2 mRNA. These results suggest that ACP-induced nanocurrents alter signal transduction pathways that are involved in the inflammatory response and could therefore be utilized in the treatment of various inflammatory diseases such as arthritis and colitis.


Nutrients ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 2630 ◽  
Author(s):  
Isabel Gálvez ◽  
Leticia Martín-Cordero ◽  
María Dolores Hinchado ◽  
Alberto Álvarez-Barrientos ◽  
Eduardo Ortega

Anomalous immune/inflammatory responses in obesity take place along with alterations in the neuroendocrine responses and dysregulation in the immune/stress feedback mechanisms. Exercise is a potential anti-inflammatory strategy in this context, but the influence of exercise on the β2 adrenergic regulation of the monocyte-mediated inflammatory response in obesity remains completely unknown. The first objective of this study was to analyze the effect of exercise on the inflammatory profile and phenotype of monocytes from obese and lean animals, and the second aim was to determine whether obesity could affect monocytes’ inflammatory response to β2 adrenergic activation in exercised animals. C57BL/6J mice were allocated to different lean or obese groups: sedentary, with acute exercise, or with regular exercise. The inflammatory profile and phenotype of their circulating monocytes were evaluated by flow cytometry in the presence or absence of the selective β2 adrenergic receptor agonist terbutaline. Exercise caused an anti-inflammatory effect in obese individuals and a pro-inflammatory effect in lean individuals. β2 adrenergic receptor stimulation exerted a global pro-inflammatory effect in monocytes from exercised obese animals and an anti-inflammatory effect in monocytes from exercised lean animals. Thus, β2 adrenergic regulation of inflammation in monocytes from exercised animals seems to depend on the inflammatory basal set-point.


2019 ◽  
Vol 65 (1) ◽  
pp. 59-67 ◽  
Author(s):  
Hong Xiao Cui ◽  
Xiu Rong Xu

Rabbit is susceptible to intestinal infection, which often results in severe inflammatory response. To investigate whether the special community structure of rabbit intestinal bacteria contributes to this susceptibility, we compared the inflammatory responses of isolated rabbit crypt and villus to heat-treated total bacteria in pig, chicken, and rabbit ileal contents. The dominant phylum in pig and chicken ileum was Firmicutes, while Bacteroidetes was dominant in rabbit ileum. The intestinal bacteria from rabbit induced higher expression of toll-like receptor 4 (TLR4) in rabbit crypt and villus (P < 0.05). TLR2 and TLR3 expression was obviously stimulated by chicken and pig intestinal bacteria (P < 0.05) but not by those of rabbit. The ileal bacteria from those three animals all increased the expression of tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL-6) in crypts and villus (P < 0.05). Chicken and pig ileal bacteria also stimulated the expression of anti-inflammatory factors interferon beta (IFN-β) and IL-10 (P < 0.05), while those of rabbit did not (P > 0.05). In conclusion, a higher abundance of Gram-negative bacteria in rabbit ileum did not lead to more expressive pro-inflammatory cytokines in isolated rabbit crypt and villus, but a higher percentage of Lactobacillus in chicken ileum might result in more expressive anti-inflammatory factors.


2020 ◽  
Vol 8 (6) ◽  
pp. 804
Author(s):  
Silvana Barros ◽  
Ana Paula D. Ribeiro ◽  
Steven Offenbacher ◽  
Zvi G. Loewy

Oral mucositis, inflammation, and ulceration that occur in the oral cavity can manifest in significant pain. A formulation was designed to investigate the potential of vitamin E to ameliorate inflammation resulting from Candida albicans in cell-based systems. Human gingival fibroblasts and THP1 cells were stimulated with heat killed C. albicans and Porphyromonas gingivalis LPS (agonists). Unstimulated cells were included as controls. Cells were also simultaneously treated with a novel denture adhesive formulation that contains vitamin E (antagonist). The experimental conditions included cells exposed to the experimental formulation or the vehicle for 2 h for mRNA extraction and analysis, and cells left for 24 h under those experimental conditions for analysis of protein expression by ELISA. ssAffymetrix expression microarray pathway analyses demonstrated that the tested formulation exhibited a statistically significant (p < 0.05) inhibition of the following key inflammatory pathways: TLR 6, IL-1 signaling (IRAK, A20), NF-kappaB, IL-6 signaling (gp130, JK2 and GRB2), TNF signaling (TNF receptor) and Arachidonic acid metabolism (PLA2). Quantitative PCR array analysis confirmed the downregulation of key inflammatory genes when cells under adhesive treatment were challenged with heat killed C. albicans. PGE2 secretion was inhibited by the tested formulation only on THP1 cells after 24 h stimulation with C. albicans. These results suggest that the active formulation containing vitamin E acetate can modulate inflammatory responses, through anti-inflammatory actions as indicated by in vitro experimental conditions.


2015 ◽  
Vol 83 (4) ◽  
pp. 1587-1597 ◽  
Author(s):  
Adam G. Peres ◽  
Camille Stegen ◽  
Junbin Li ◽  
An Qi Xu ◽  
Benoit Levast ◽  
...  

Staphylococcus aureusis a Gram-positive bacterium that is carried by a quarter of the healthy human population and that can cause severe infections. This pathobiosis has been linked to a balance between Toll-like receptor 2 (TLR2)-dependent pro- and anti-inflammatory responses. The relationship between these two types of responses is unknown. Analysis of 16 nasal isolates ofS. aureusshowed heterogeneity in their capacity to induce pro- and anti-inflammatory responses, suggesting that these two responses are independent of each other. Uncoupling of these responses was corroborated by selective signaling through phosphoinositol 3-kinase (PI3K)-Akt-mTOR and extracellular signal-regulated kinase (ERK) for the anti-inflammatory response and through p38 for the proinflammatory response. Uncoupling was also observed at the level of phagocytosis and phagosomal processing ofS. aureus, which were required solely for the proinflammatory response. Importantly, the anti-inflammatory properties of anS. aureusisolate correlated with its ability to modulate T cell immunity. Our results suggest the presence of anti-inflammatory TLR2 ligands in the staphylococcal cell wall, whose identification may provide templates for novel immunomodulatory drugs.


2014 ◽  
Vol 82 (11) ◽  
pp. 4689-4697 ◽  
Author(s):  
Iviana M. Torres ◽  
Yash R. Patankar ◽  
Tamer B. Shabaneh ◽  
Emily Dolben ◽  
Deborah A. Hogan ◽  
...  

ABSTRACTInfection byPseudomonas aeruginosa, and bacteria in general, frequently promotes acidification of the local microenvironment, and this is reinforced by pulmonary exertion and exacerbation. However, the consequence of an acidic environment on the host inflammatory response toP. aeruginosainfection is poorly understood. Here we report that the pivotal cellular and host proinflammatory interleukin-1β (IL-1β) response, which enables host clearance of the infection but can produce collateral inflammatory damage, is increased in response toP. aeruginosainfection within an acidic environment. Synergistic mechanisms that promote increased IL-1β release in response toP. aeruginosainfection in an acidic environment are increased pro-IL-1β induction and increased caspase-1 activity, the latter being dependent upon a functional type III secretion system of the bacteria and the NLRC4 inflammasome of the host. Using anin vivoperitonitis model, we have validated that the IL-1β inflammatory response is increased in mice in response toP. aeruginosainfection within an acidic microenvironment. These data reveal novel insights into the regulation and exacerbation of inflammatory responses toP. aeruginosa.


2011 ◽  
Vol 10 (4) ◽  
pp. 565-577 ◽  
Author(s):  
Julie Shareck ◽  
André Nantel ◽  
Pierre Belhumeur

ABSTRACTThe polymorphic yeastCandida albicansexists in yeast and filamentous forms. Given that the morphogenetic switch coincides with the expression of many virulence factors, the yeast-to-hypha transition constitutes an attractive target for the development of new antifungal agents. Since an untapped therapeutic potential resides in small molecules that hinderC. albicansfilamentation, we characterized the inhibitory effect of conjugated linoleic acid (CLA) on hyphal growth and addressed its mechanism of action. CLA inhibited hyphal growth in a dose-dependent fashion in both liquid and solid hypha-inducing media. The fatty acid blocked germ tube formation without affecting cellular growth rates. Global transcriptional profiling revealed that CLA downregulated the expression of hypha-specific genes and abrogated the induction of several regulators of hyphal growth, includingTEC1,UME6,RFG1, andRAS1. However, neitherUME6norRFG1was necessary for CLA-mediated hyphal growth inhibition. Expression analysis showed that the downregulation ofTEC1expression levels by CLA depended onRAS1. In addition, whileRAS1transcript levels remained constant in CLA-treated cells, its protein levels declined with time. With the use of a strain expressing GFP-Ras1p, CLA treatment was also shown to affect Ras1p localization to the plasma membrane. These findings suggest that CLA inhibits hyphal growth by affecting the cellular localization of Ras1p and blocking the increase inRAS1mRNA and protein levels. Combined, these effects should prevent the induction of the Ras1p signaling pathway. This study provides the biological and molecular explanations that underlie CLA's ability to inhibit hyphal growth inC. albicans.


Author(s):  
Yufei Xie ◽  
Annemarie H. Meijer ◽  
Marcel J. M. Schaaf

Dysregulation of the inflammatory response in humans can lead to various inflammatory diseases, like asthma and rheumatoid arthritis. The innate branch of the immune system, including macrophage and neutrophil functions, plays a critical role in all inflammatory diseases. This part of the immune system is well-conserved between humans and the zebrafish, which has emerged as a powerful animal model for inflammation, because it offers the possibility to image and study inflammatory responses in vivo at the early life stages. This review focuses on different inflammation models established in zebrafish, and how they are being used for the development of novel anti-inflammatory drugs. The most commonly used model is the tail fin amputation model, in which part of the tail fin of a zebrafish larva is clipped. This model has been used to study fundamental aspects of the inflammatory response, like the role of specific signaling pathways, the migration of leukocytes, and the interaction between different immune cells, and has also been used to screen libraries of natural compounds, approved drugs, and well-characterized pathway inhibitors. In other models the inflammation is induced by chemical treatment, such as lipopolysaccharide (LPS), leukotriene B4 (LTB4), and copper, and some chemical-induced models, such as treatment with trinitrobenzene sulfonic acid (TNBS), specifically model inflammation in the gastro-intestinal tract. Two mutant zebrafish lines, carrying a mutation in the hepatocyte growth factor activator inhibitor 1a gene (hai1a) and the cdp-diacylglycerolinositol 3-phosphatidyltransferase (cdipt) gene, show an inflammatory phenotype, and they provide interesting model systems for studying inflammation. These zebrafish inflammation models are often used to study the anti-inflammatory effects of glucocorticoids, to increase our understanding of the mechanism of action of this class of drugs and to develop novel glucocorticoid drugs. In this review, an overview is provided of the available inflammation models in zebrafish, and how they are used to unravel molecular mechanisms underlying the inflammatory response and to screen for novel anti-inflammatory drugs.


Sign in / Sign up

Export Citation Format

Share Document