scholarly journals Interaction of Candida albicans Cell Wall Als3 Protein with Streptococcus gordonii SspB Adhesin Promotes Development of Mixed-Species Communities

2010 ◽  
Vol 78 (11) ◽  
pp. 4644-4652 ◽  
Author(s):  
Richard J. Silverman ◽  
Angela H. Nobbs ◽  
M. Margaret Vickerman ◽  
Michele E. Barbour ◽  
Howard F. Jenkinson

ABSTRACT Candida albicans colonizes human mucosa and prosthetic surfaces associated with artificial joints, catheters, and dentures. In the oral cavity, C. albicans coexists with numerous bacterial species, and evidence suggests that bacteria may modulate fungal growth and biofilm formation. Streptococcus gordonii is found on most oral cavity surfaces and interacts with C. albicans to promote hyphal and biofilm formation. In this study, we investigated the role of the hyphal-wall protein Als3p in interactions of C. albicans with S. gordonii. Utilizing an ALS3 deletion mutant strain, it was shown that cells were not affected in initial adherence to the salivary pellicle or in hyphal formation in the planktonic phase. However, the Als3− mutant was unable to form biofilms on the salivary pellicle or deposited S. gordonii DL1 wild-type cells, and after initial adherence, als3Δ/als3Δ (ΔALS3) cells became detached concomitant with hyphal formation. In coaggregation assays, S. gordonii cells attached to, and accumulated around, hyphae formed by C. albicans wild-type cells. However, streptococci failed to attach to hyphae produced by the ΔALS3 mutant. Saccharomyces cerevisiae S150-2B cells expressing Als3p, but not control cells, supported binding of S. gordonii DL1. However, S. gordonii Δ(sspA sspB) cells deficient in production of the surface protein adhesins SspA and SspB showed >50% reduced levels of binding to S. cerevisiae expressing Als3p. Lactococcus lactis cells expressing SspB bound avidly to S. cerevisiae expressing Als3p, but not to S150-2B wild-type cells. These results show that recognition of C. albicans by S. gordonii involves Als3 protein-SspB protein interaction, defining a novel mechanism in fungal-bacterial communication.

2009 ◽  
Vol 77 (9) ◽  
pp. 3696-3704 ◽  
Author(s):  
Caroline V. Bamford ◽  
Anita d'Mello ◽  
Angela H. Nobbs ◽  
Lindsay C. Dutton ◽  
M. Margaret Vickerman ◽  
...  

ABSTRACT The fungus Candida albicans colonizes human oral cavity surfaces in conjunction with a complex microflora. C. albicans SC5314 formed biofilms on saliva-coated surfaces that in early stages of development consisted of ∼30% hyphal forms. In mixed biofilms with the oral bacterium Streptococcus gordonii DL1, hyphal development by C. albicans was enhanced so that biofilms consisted of ∼60% hyphal forms. Cell-cell contact between S. gordonii and C. albicans involved Streptococcus cell wall-anchored proteins SspA and SspB (antigen I/II family polypeptides). Repression of C. albicans hyphal filament and biofilm production by the quorum-sensing molecule farnesol was relieved by S. gordonii. The ability of a luxS mutant of S. gordonii deficient in production of autoinducer 2 to induce C. albicans hyphal formation was reduced, and this mutant suppressed farnesol inhibition of hyphal formation less effectively. Coincubation of the two microbial species led to activation of C. albicans mitogen-activated protein kinase Cek1p, inhibition of Mkc1p activation by H2O2, and enhanced activation of Hog1p by farnesol, which were direct effects of streptococci on morphogenetic signaling. These results suggest that interactions between C. albicans and S. gordonii involve physical (adherence) and chemical (diffusible) signals that influence the development of biofilm communities. Thus, bacteria may play a significant role in modulating Candida carriage and infection processes in the oral cavity.


2004 ◽  
Vol 72 (8) ◽  
pp. 4819-4826 ◽  
Author(s):  
Tomoyuki Hamada ◽  
Masatsugu Kawashima ◽  
Haruo Watanabe ◽  
Junji Tagami ◽  
Hidenobu Senpuku

ABSTRACT Oral streptococci play a large role in dental biofilm formation, and several types interact as early colonizers with the enamel salivary pellicle to form the primary biofilm, as well as to incorporate other bacteria on tooth surfaces. Interactions of surface molecules of individual streptococci with the salivary pellicle on the tooth surface have an influence on the etiological properties of an oral biofilm. To elucidate the molecular interactions of streptococci with salivary components, binding between surface protein (SspB and PAg) peptides of Streptococcus gordonii and Streptococcus sobrinus were investigated by utilizing BIAcore biosensor technology. The analogous peptide [change of T at position 400 to K in SspB(390-402), resulting in the SspB(390-T400K-402) peptide] from S. gordonii showed the greatest response for binding to salivary components and inhibited the binding of Streptococcus sanguis by more than 50% in a competitive inhibition assay in a comparison with other SspB and PAg peptides. This peptide also bound to the high-molecular-weight protein complex of salivary components and the agglutinin (gp340/DMBT1) peptide (scavenger receptor cysteine-rich domain peptide 2 [SRCRP 2]). In addition, the SspB(390-T400K-402) peptide was visualized by two surface positive charges in connection with the positively charged residues, in which lysine was a key residue for binding. Therefore, the region containing lysine may have binding activity in S. gordonii and S. sanguis, and the SRCRP 2 region may function as a receptor for the binding. These findings may provide useful information regarding the molecular mechanism of early biofilm formation by streptococci on tooth surfaces.


2011 ◽  
Vol 79 (8) ◽  
pp. 3239-3248 ◽  
Author(s):  
Xiaobo Liang ◽  
Yi-Ywan M. Chen ◽  
Teresa Ruiz ◽  
Hui Wu

ABSTRACTDental biofilm formation is critical for maintaining the healthy microbial ecology of the oral cavity. Streptococci are predominant bacterial species in the oral cavity and play important roles in the initiation of plaque formation. In this study, we identified a new cell surface protein, BapA1, fromStreptococcus parasanguinisFW213 and determined that BapA1 is critical for biofilm formation. Sequence analysis revealed that BapA1 possesses a typical cell wall-sorting signal for cell surface-anchored proteins from Gram-positive bacteria. No functional orthologue was reported in other streptococci. BapA1 possesses nine putative pilin isopeptide linker domains which are crucial for pilus assembly in a number of Gram-positive bacteria. Deletion of the 3′ portion ofbapA1generated a mutant that lacks surface-anchored BapA1 and abolishes formation of short fibrils on the cell surface. The mutant failed to form biofilms and exhibited reduced adherence to anin vitrotooth model. The BapA1 deficiency also inhibited bacterial autoaggregation. The N-terminal muramidase-released-protein-like domain mediated BapA1-BapA1 interactions, suggesting that BapA1-mediated cell-cell interactions are important for bacterial autoaggregation and biofilm formation. Furthermore, the BapA1-mediated bacterial adhesion and biofilm formation are independent of a fimbria-associated serine-rich repeat adhesin, Fap1, demonstrating that BapA1 is a new streptococcal adhesin.


2021 ◽  
Vol 7 (5) ◽  
pp. 382
Author(s):  
Vuvi G. Tran ◽  
Na N. Z. Nguyen ◽  
Byungsuk Kwon

Invasive fungal infections by Candida albicans frequently cause mortality in immunocompromised patients. Neutrophils are particularly important for fungal clearance during systemic C. albican infection, yet little has been known regarding which surface receptor controls neutrophils’ antifungal activities. CD137, which is encoded by Tnfrsf9, belongs to the tumor necrosis receptor superfamily and has been shown to regulate neutrophils in Gram-positive bacterial infection. Here, we used genetic and immunological tools to probe the involvement of neutrophil CD137 signaling in innate defense mechanisms against systemic C. albicans infection. We first found that Tnfrsf9−/− mice were susceptible to C. albicans infection, whereas injection of anti-CD137 agonistic antibody protected the host from infection, suggesting that CD137 signaling is indispensable for innate immunity against C. albicans infection. Priming of isolated neutrophils with anti-CD137 antibody promoted their phagocytic and fungicidal activities through phospholipase C. In addition, injection of anti-CD137 antibody significantly augmented restriction of fungal growth in Tnfrsf9−/− mice that received wild-type (WT) neutrophils. In conclusion, our results demonstrate that CD137 signaling contributes to defense mechanisms against systemic C. albicans infection by promoting rapid fungal clearance.


2003 ◽  
Vol 185 (23) ◽  
pp. 6801-6808 ◽  
Author(s):  
Shannon A. Carroll ◽  
Torsten Hain ◽  
Ulrike Technow ◽  
Ayub Darji ◽  
Philippos Pashalidis ◽  
...  

ABSTRACT A novel cell wall hydrolase encoded by the murA gene of Listeria monocytogenes is reported here. Mature MurA is a 66-kDa cell surface protein that is recognized by the well-characterized L. monocytogenes-specific monoclonal antibody EM-7G1. MurA displays two characteristic features: (i) an N-terminal domain with homology to muramidases from several gram-positive bacterial species and (ii) four copies of a cell wall-anchoring LysM repeat motif present within its C-terminal domain. Purified recombinant MurA produced in Escherichia coli was confirmed to be an authentic cell wall hydrolase with lytic properties toward cell wall preparations of Micrococcus lysodeikticus. An isogenic mutant with a deletion of murA that lacked the 66-kDa cell wall hydrolase grew as long chains during exponential growth. Complementation of the mutant strain by chromosomal reintegration of the wild-type gene restored expression of this murein hydrolase activity and cell separation levels to those of the wild-type strain. Studies reported herein suggest that the MurA protein is involved in generalized autolysis of L. monocytogenes.


2020 ◽  
Vol 8 (11) ◽  
pp. 1771
Author(s):  
Akshaya Lakshmi Krishnamoorthy ◽  
Alex A. Lemus ◽  
Adline Princy Solomon ◽  
Alex M. Valm ◽  
Prasanna Neelakantan

Candida albicans as an opportunistic pathogen exploits the host immune system and causes a variety of life-threatening infections. The polymorphic nature of this fungus gives it tremendous advantage to breach mucosal barriers and cause oral and disseminated infections. Similar to C. albicans, Enterococcus faecalis is a major opportunistic pathogen, which is of critical concern in immunocompromised patients. There is increasing evidence that E. faecalis co-exists with C. albicans in the human body in disease samples. While the interactive profiles between these two organisms have been studied on abiotic substrates and mouse models, studies on their interactions on human oral mucosal surfaces are non-existent. Here, for the first time, we comprehensively characterized the interactive profiles between laboratory and clinical isolates of C. albicans (SC5314 and BF1) and E. faecalis (OG1RF and P52S) on an organotypic oral mucosal model. Our results demonstrated that the dual species biofilms resulted in profound surface erosion and significantly increased microbial invasion into mucosal compartments, compared to either species alone. Notably, several genes of C. albicans involved in tissue adhesion, hyphal formation, fungal invasion, and biofilm formation were significantly upregulated in the presence of E. faecalis. By contrast, E. faecalis genes involved in quorum sensing, biofilm formation, virulence, and mammalian cell invasion were downregulated. This study highlights the synergistic cross-kingdom interactions between E. faecalis and C. albicans in mucosal tissue invasion.


2020 ◽  
Author(s):  
Mohammad H. Mirhakkak ◽  
Sascha Schäuble ◽  
Tilman E. Klassert ◽  
Sascha Brunke ◽  
Philipp Brandt ◽  
...  

AbstractCandida albicans is a leading cause of life-threatening hospital-acquired infections and can lead to Candidemia with sepsis-like symptoms and high mortality rates. We reconstructed a genome-scale C. albicans metabolic model to investigate bacterial-fungal metabolic interactions in the gut as determinants of fungal abundance. We optimized the predictive capacity of our model using wild type and mutant C. albicans growth data and used it for in silico metabolic interaction predictions. Our analysis of more than 900 paired fungal–bacterial metabolic models predicted key gut bacterial species modulating C. albicans colonization levels. Among the studied microbes, Alistipes putredinis was predicted to negatively affect C. albicans levels. We confirmed these findings by metagenomic sequencing of stool samples from 24 human subjects and by fungal growth experiments in bacterial spent media. Furthermore, our pairwise simulations guided us to specific metabolites with promoting or inhibitory effect to the fungus when exposed in defined media under carbon and nitrogen limitation. Our study demonstrates that in silico metabolic prediction can lead to the identification of gut microbiome features that can significantly affect potentially harmful levels of C. albicans.


Microbiology ◽  
2015 ◽  
Vol 161 (2) ◽  
pp. 411-421 ◽  
Author(s):  
Alison A. Jack ◽  
Debbie E. Daniels ◽  
Mark A. Jepson ◽  
M. Margaret Vickerman ◽  
Richard J. Lamont ◽  
...  

2016 ◽  
Vol 198 (19) ◽  
pp. 2643-2650 ◽  
Author(s):  
Boo Shan Tseng ◽  
Charlotte D. Majerczyk ◽  
Daniel Passos da Silva ◽  
Josephine R. Chandler ◽  
E. Peter Greenberg ◽  
...  

ABSTRACTMembers of the genusBurkholderiaare known to be adept at biofilm formation, which presumably assists in the survival of these organisms in the environment and the host. Biofilm formation has been linked to quorum sensing (QS) in several bacterial species. In this study, we characterizedBurkholderia thailandensisbiofilm development under flow conditions and sought to determine whether QS contributes to this process.B. thailandensisbiofilm formation exhibited an unusual pattern: the cells formed small aggregates and then proceeded to produce mature biofilms characterized by “dome” structures filled with biofilm matrix material. We showed that this process was dependent on QS.B. thailandensishas three acyl-homoserine lactone (AHL) QS systems (QS-1, QS-2, and QS-3). An AHL-negative strain produced biofilms consisting of cell aggregates but lacking the matrix-filled dome structures. This phenotype was rescued via exogenous addition of the three AHL signals. Of the threeB. thailandensisQS systems, we show that QS-1 is required for proper biofilm development, since abtaR1mutant, which is defective in QS-1 regulation, forms biofilms without these dome structures. Furthermore, our data show that the wild-type biofilm biomass, as well as the material inside the domes, stains with a fucose-binding lectin. ThebtaR1mutant biofilms, however, are negative for fucose staining. This suggests that the QS-1 system regulates the production of a fucose-containing exopolysaccharide in wild-type biofilms. Finally, we present data showing that QS ability during biofilm development produces a biofilm that is resistant to dispersion under stress conditions.IMPORTANCEThe saprophyteBurkholderia thailandensisis a close relative of the pathogenic bacteriumBurkholderia pseudomallei, the causative agent of melioidosis, which is contracted from its environmental reservoir. Since most bacteria in the environment reside in biofilms,B. thailandensisis an ideal model organism for investigating questions inBurkholderiaphysiology. In this study, we characterizedB. thailandensisbiofilm development and sought to determine if quorum sensing (QS) contributes to this process. Our work shows thatB. thailandensisproduces biofilms with unusual dome structures under flow conditions. Our findings suggest that these dome structures are filled with a QS-regulated, fucose-containing exopolysaccharide that may be involved in the resilience ofB. thailandensisbiofilms against changes in the nutritional environment.


2007 ◽  
Vol 189 (22) ◽  
pp. 8233-8240 ◽  
Author(s):  
Esther Heikens ◽  
Marc J. M. Bonten ◽  
Rob J. L. Willems

ABSTRACT Enterococci have emerged as important nosocomial pathogens with resistance to multiple antibiotics. Adhesion to abiotic materials and biofilm formation on medical devices are considered important virulence properties. A single clonal lineage of Enterococcus faecium, complex 17 (CC17), appears to be a successful nosocomial pathogen, and most CC17 isolates harbor the enterococcal surface protein gene, esp. In this study, we constructed an esp insertion-deletion mutant in a clinical E. faecium CC17 isolate. In addition, initial adherence and biofilm assays were performed. Compared to the wild-type strain, the esp insertion-deletion mutant no longer produced Esp on the cell surface and had significantly lower initial adherence to polystyrene and significantly less biofilm formation, resulting in levels of biofilm comparable to those of an esp-negative isolate. Capacities for initial adherence and biofilm formation were restored in the insertion-deletion mutant by in trans complementation with esp. These results identify Esp as the first documented determinant in E. faecium CC17 with an important role in biofilm formation, which is an essential factor in infection pathogenesis.


Sign in / Sign up

Export Citation Format

Share Document