scholarly journals Characterization of Human Immunoglobulin (Ig) Isotype and IgG Subclass Response to Bartonella henselae Infection

1998 ◽  
Vol 66 (12) ◽  
pp. 5915-5920 ◽  
Author(s):  
Svena L. McGill ◽  
Russell L. Regnery ◽  
Kevin L. Karem

ABSTRACT Serologic parameters of cat scratch disease (CSD) were evaluated by Western blot analysis. Sera from patients with serologically confirmed CSD antigen were screened for immunoglobulin (Ig) isotype-specific as well as IgG subclass-specific reactivity against Bartonella henselae whole-cell antigen. Bartonella-negative control sera were used to determine baseline antibody activity. Heterogeneous B. henselae-specific IgG reactivity with numerous protein bands, ranging from >150 to <17 kDa, was observed. Though individual banding patterns were variable, one approximately 83-kDa B. henselae protein (Bh83) was immunoreactive with all CSD sera tested, suggesting it is a conserved antigen during infection. Bh83 was not recognized by reference human antisera againstRickettsia rickettsii, Chlamydia group positive, Treponema pallidum, Orientia tsutsugamushi, Fransciscella tularensis,Ehrlichia chaffeensis, Mycoplasma pneumoniae, and Escherichia coli, although other cross-reactive proteins were evident. Significantly, CSD sera failed to recognize the 83-kDa protein when tested against Bartonella quintanaantigen, though sera from B. quintana-infected patients did react to Bh83. This cross-reactivity suggests epitope conservation during infection with B. henselae or B. quintana. Western blot analysis further revealed similar banding patterns when B. henselae was reacted against the Ig isotypes IgG and IgG1 and both secretory and alpha chains of IgA. Neither IgM nor IgE reacted significantly toBartonella antigen by our Western blot analysis. Dissection of the antibody response at the IgG subclass level indicated that prominent antigen recognition was limited to IgG1. These observations provide insight into induced immunity during CSD and provide evidence for conserved epitope expression during infection withB. henselae or B. quintana.

2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Shilpa Sreedharan ◽  
John A. Petros ◽  
Viraj A. Master ◽  
Kenneth Ogan ◽  
John G. Pattaras ◽  
...  

Introduction and Objectives. There are over 65,000 new cases of renal cell carcinoma (RCC) each year, yet there is no effective clinical screening test for RCC. A single report claimed no overlap between urine levels of aquaporin-1 (AQP1) in patients with and without RCC (Mayo Clin Proc. 85:413, 2010). Here, we used archived and fresh RCC patient urine to validate this report.Methods. Archived RCC, fresh prenephrectomy RCC, and non-RCC negative control urines were processed for Western blot analysis. Urinary creatinine concentrations were quantified by the Jaffe reaction (Nephron 16:31, 1976). Precipitated protein was dissolved in 1x SDS for a final concentration of 2 μg/µL creatinine.Results. Negative control and archived RCC patient urine failed to show any AQP1 protein by Western blot analysis. Fresh RCC patient urine is robustly positive for AQP1. There was no signal overlap between fresh RCC and negative control, making differentiation straightforward.Conclusions. Our data confirms that fresh urine of patients with RCC contains easily detectable AQP1 protein. However, archival specimens showed an absence of detectable AQP1 indistinguishable from negative control. These findings suggest that a clinically applicable diagnostic test for AQP1 in fresh urine may be useful for detecting RCC.


2018 ◽  
Vol 33 (1-2) ◽  
pp. 29-33 ◽  
Author(s):  
Nafisa Azmuda ◽  
Rabeya Bilkis ◽  
Humaira Akter ◽  
Anowara Begum ◽  
Sirajul Islam Khan ◽  
...  

Many bacteria of clinical and environmental origin show evidence of sharing common surface antigens. The present study aimed for isolation of Escherichia coli strains that were serologically cross-reactive with Shigella species from freshwater ecosystems in Bangladesh by conventional cultural methods. Among twenty eight isolates, two isolates, termed 12(35) and 6(50) showed cross-reactivity with four polyvalent serogroup-specific Shigella antisera using slide agglutination assay. The isolates were identified and charcterized by cultural and biochemical properties and Western blot analysis. The isolates showed typical Escherichia coli cell morphology and cultural and biochemical properties and were identified as Escherichia coli by API 20E tests. Western blot analysis confirmed the isolates as cross-reactive with all the four group-specific Shigella antisera due to presence of immunogenic proteins and LPS. One of the isolates also showed cross-reactivity with multiple type-specific Shigella boydii antisera (monovalent) because of immunogenic proteins. Both the isolates were identified as nonpathogenic due to absence of virulence marker genes of diarrheagenic E. coli variants.This study revealed that a number of bacteria present in the environment could share important Shigella species surface antigens. Naturally occurring nonpathogenic environmental bacteria expressing surface antigens specific for certain types of Shigella could be a good choice for vaccine candidates against shigellosis. Bangladesh J Microbiol, Volume 33, Number 1-2, June-Dec 2016, pp 29-33


1999 ◽  
Vol 6 (4) ◽  
pp. 558-566 ◽  
Author(s):  
R. L. Freeland ◽  
D. T. Scholl ◽  
K. R. Rohde ◽  
L. J. Shelton ◽  
K. L. O’Reilly

ABSTRACT The seroreactivities of both naturally and experimentally infected cats to Bartonella henselae was examined. Serum samples collected weekly from nine cats experimentally infected with B. henselae LSU16 were tested by enzyme-linked immunosorbent assay (ELISA) and Western blot analysis. The magnitude and isotype of the antibody response were investigated by ELISA. Western blot analysis allowed the identification of at least 24Bartonella-specific antigens recognized by the cats during infection. Antibody titers to specific antigens, as determined by Western blot analysis, ranged from 10 to 640 and varied among the different antibody-antigen interactions. Absorption of sera from an experimentally infected cat, using whole cells and cell lysates of various Bartonella species and other bacteria that commonly colonize cats, supported the identification of thoseBartonella-specific antigens recognized by the experimentally infected cats. Furthermore, a number of possible species- and type-specific antigens were identified. Finally, sera obtained from cats at local animal shelters were screened for the presence of antibodies directed against theBartonella-specific bands identified in the experimentally infected cats. A number of Bartonella-specific antigens have been identified to which strong antibody responses are generated in both experimentally and naturally infected cats, some of which may be useful in diagnosing species- and/or type-specific infections. In addition, the results from these experiments will lead to the development of monoclonal antibodies targeted against those genus-, species-, and type-specific antigens.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 189-189
Author(s):  
Ryan Yen ◽  
Lambert Yue ◽  
Steven Pelech ◽  
Xiaoyan Jiang

Chronic myeloid leukemia (CML) is driven by the BCR-ABL1 oncoprotein with constitutively active protein-tyrosine kinase activity, perturbing multiple signaling pathways. Although therapies with tyrosine kinase inhibitors (TKIs) can effectively treat early phase CML, relapses and emergence of TKI resistance are problematic, due to BCR-ABL kinase domain mutations and TKI unresponsive quiescent leukemic stem cells (LSCs). These observations point towards a need for alternate treatment strategies to prevent the development of resistant LSCs. We previously demonstrated that Abelson helper integration site-1 (AHI-1) is a highly deregulated protein in CML LSCs and that its WD40-repeat domain physically interacts with BCR-ABL, enhancing leukemia-initiating activity. AHI-1 also contains an SH3 domain, which mediates TKI resistance in LSCs. This domain interacts with dynamin-2 (DNM2) and forms a complex with BCR-ABL, to enhance the phosphorylation and activity of DNM2. The AHI-1-BCR-ABL-DNM2 complex is shown to regulate leukemic properties in patient LSCs, including increased ROS production, endocytosis and autophagy. Interestingly, deletion of the Ahi-1 SH3 domain (Ahi-1 SH3Δ) results in a defect in Ahi-1 localization, with most being present in the nucleus. To test whether Ahi-1 SH3 domain activity directly affects cytoplasmic anchoring and localization, we have generated two Ahi-1 mutants, using site-directed mutagenesis: a mutation in the key tryptophan residue (W939A) involved in SH3 domain binding and in a non-conserved surface residue (M906A), as a negative control, based on the crystal structure of the AHI-1 SH3 domain. Interestingly, the cytoplasm-to-nucleus signal ratio of Ahi-1 W939A was significantly reduced compared to the negative control or wildtype Ahi-1, as assessed by immunofluorescence and confocal microscopy (70% reduction, p&lt;0.0001), indicating that changes in localization of Ahi-1 SH3Δ may result in disruption of the complex and allow for new interactions with nuclear proteins. Investigating changes in the proteome may help uncover downstream effects of the AHI-1-BCR-ABL-DNM2 complex and its biological role in mediating TKI resistance. Advanced antibody microarray analysis was then used to investigate differences in the proteome and phosphorylation landscape of BCR-ABL+ cells co-transduced with wildtype Ahi-1 or Ahi-1 SH3Δ. This system quantifies the differences in expression and phosphorylation states of key signaling proteins simultaneously, using 878 antibodies in duplicate. Twenty leads were identified by the following criteria: a large signal difference of at least 1.5-fold change, high signal strength for high expression, and low error between duplicates. These leads were validated by Western blot analysis and several of them were confirmed. Particularly, phosphorylation of cyclin-dependent kinase 1 (CDK1), a key player in cell cycle control and mitochondrial dynamics, was greatly reduced in cells expressing wildtype Ahi-1 compared to Ahi-1 SH3Δ, indicating that AHI-1-mediated phosphorylation changes in CDK1 may contribute to regulation of mitochondrial functions. Indeed, BCR-ABL-transduced cells co-expressing wildtype Ahi-1 showed increased mitochondria potential in response to TKI treatment or serum starvation, in MitoTracker analysis (p&lt;0.05). However, this was not observed in BCR-ABL-transduced cells co-expressing the Ahi-1 SH3Δ mutant. A similar trend was also observed in immunofluorescence confocal microscopy analysis of the mitochondrial importer receptor, TOM20. To further study the role of DNM2 in mediating mitochondrial dynamics associated with AHI-1 and BCR-ABL, CRISPR-Cas9 mediated DNM2 knockdown was performed in TKI-resistant cells, using two different DNM2-targeting guide RNAs; these resulted in significant reduction in DNM2 (78% & 75%) in Western blot analysis. The knockdown cells showed a reduction in viability (60% reduction) and increased sensitivity to TKI treatment compared to the control (90% vs. 30% reduction) after 48 hours and changes in mitochondrial activity were also observed in these cells. These results support a role for mitochondrial dynamics in the AHI-1-BCR-ABL-DNM2 complex-mediated TKI response and that targeting key biological processes regulated by the AHI-1-BCR-ABL-DNM2 complex and its pathways may lead to new therapeutic strategies to overcome TKI resistance in CML. Disclosures Pelech: Kinexus Bioinformatics Corporation: Equity Ownership.


2021 ◽  
Vol 39 (15_suppl) ◽  
pp. e12517-e12517
Author(s):  
Shasha Cui ◽  
Dongni Zhang ◽  
Wenping Lu

e12517 Background: Estrogen receptor (ER)-positive breast cancer is the most frequent subtype accounting for about 70% of all cases. Tamoxifen (TAM) is still the most effective drug for treating ER+/PR+ breast cancer. However, recurrence and metastasis still occur in 30-50% of patients due to TAM resistance. Furthermore, studies have shown that breast cancer stem cells (BCSCs) play an important role in TAM resistance, and exosomes regulate dynamic changes of BCSCs in tumor microenvironment. Additionally, the extract of Huangqi and Ezhu (EHE) has been shown to inhibit multiple TAM-associated resistance signaling pathways. In the current study, we investigated the effect of EHE to reverse TAM-resistance in LCC9 cells via crosstalk of distinct types of exosomes. Methods: Exosomes were extracted from LCC9 cells by ultracentrifugation and characterized by particle size detection, transmission electron microscopy and western blot analysis. Subsequently, isolated LCC9 exosomes were used to treat bone marrow stem cells (BMSCs) with EHE only, TAM only, EHE and TAM (EHETAM), and no treatment (negative control, NC). After treatment, exosomes of BMSCs were isolated and incubated further with LCC9 cells. CCK-8 assay and flow cytometry analysis were performed, and protein expression in treated LCC9 cells was tested by western blot analysis. Results: Data from CCK-8 assay showed that compared with the NC group, proliferation of LCC9 cells was significantly reduced in the presence of exosomes of BMSCs treated with TAM (82.9%, 77.1% , 75.4%), EHE (73.2 %, 69.5% , 68.2 %) and EHETAM (68.9 %, 52.3%,54.1% ) after 24h, 48h, and 72 h, respectively (p < 0.001). EHE and EHETAM groups have more effective inhibition on cell proliferation than TAM only group on the different time separately(p < 0.001).Flow cytometry analysis demonstrated that compared with the NC group(6.1%), increased apoptosis was observed for groups of TAM (8.1%), EHE (12.5%) and EHETAM (12.2%) (p < 0.001). Compared with TAM only group, EHE and EHETAM groups also have significantly higher cell death rate (p < 0.001). Lower CD44 and HER2 expression and higher ERα expression were observed in EHE, TAM, and EHETAM than those of NC group by western blot analysis of treated LCC9 cells. Conclusions: EHE treatment can reverse TAM-resistance by interfering with the crosstalk between BMSCs and breast cancer cells exosomes to induce more active apoptosis and reduce TAM-resistant CD44+ cancer stem cells.


2006 ◽  
Vol 96 (6) ◽  
pp. 560-566 ◽  
Author(s):  
M. Turina ◽  
M. Ciuffo ◽  
R. Lenzi ◽  
L. Rostagno ◽  
L. Mela ◽  
...  

Four different viral species were isolated from diseased Ranunculus asiaticus plants growing in Imperia Province (Italian Riviera-Liguria Region). Infected plants exhibited mosaic symptoms and growth abnormalities. The viruses were mechanically inoculated to a range of herbaceous hosts and differentiated biologically. Long flexuous particles were present in leaf dip extracts observed by electron microscopy. A general protocol for the amplification of potyvirus genome fragments through reverse transcription-polymerase chain reaction generated products that were cloned and sequenced. Sequence and phylogenetic analysis suggested that three of these isolates could be considered new viral species belonging to the genus Potyvirus. The fourth isolate is a new member of the genus Macluravirus. Purified virus was used as antigen to produce a specific polyclonal antiserum in rabbit; serological features were established through double-antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA), antigen coated plate (ACP)-ELISA, and western blot analysis. DAS-ELISA was highly specific for each virus isolate, whereas some cross-reactivity was shown in ACP-ELISA and western blot analysis. Aphid transmission by Myzus persicae was demonstrated in a controlled environment for each of the four viral isolates, whereas no transmission through seed was observed.


2010 ◽  
Vol 113 (Special_Supplement) ◽  
pp. 228-235 ◽  
Author(s):  
Qiang Jia ◽  
Yanhe Li ◽  
Desheng Xu ◽  
Zhenjiang Li ◽  
Zhiyuan Zhang ◽  
...  

Object The authors sought to evaluate modification of the radiation response of C6 glioma cells in vitro and in vivo by inhibiting the expression of Ku70. To do so they investigated the effect of gene transfer involving a recombinant replication-defective adenovirus containing Ku70 short hairpin RNA (Ad-Ku70shRNA) combined with Gamma Knife treatment (GKT). Methods First, Ad-Ku70shRNA was transfected into C6 glioma cells and the expression of Ku70 was measured using Western blot analysis. In vitro, phenotypical changes in C6 cells, including proliferation, cell cycle modification, invasion ability, and apoptosis were evaluated using the MTT (3′(4,5-dimethylthiazol-2-yl)2,5-diphenyltetrazolium bromide) assay, Western blot analysis, and cell flow cytometry. In vivo, parental C6 cells transfected with Ad-Ku70shRNA were implanted stereotactically into the right caudate nucleus in Sprague-Dawley rats. After GKS, apoptosis was analyzed using the TUNEL (terminal deoxynucleotidyl transferase–mediated deoxyuridine triphosphate nick-end labeling) method. The inhibitory effects on growth and invasion that were induced by expression of proliferating cell nuclear antigen and matrix metalloproteinase–9 were determined using immunohistochemical analyses. Results The expression of Ku70 was clearly inhibited in C6 cells after transfection with Ad-Ku70shRNA. In vitro following transfection, the C6 cells showed improved responses to GKT, including suppression of proliferation and invasion as well as an increased apoptosis index. In vivo following transfection of Ad-Ku70shRNA, the therapeutic efficacy of GKT in rats with C6 gliomas was greatly enhanced and survival times in these animals were prolonged. Conclusions Our data support the potential for downregulation of Ku70 expression in enhancing the radiosensitivity of gliomas. The findings of our study indicate that targeted gene therapy–mediated inactivation of Ku70 may represent a promising strategy in improving the radioresponsiveness of gliomas to GKT.


2020 ◽  
Vol 20 (23) ◽  
pp. 2070-2079
Author(s):  
Srimadhavi Ravi ◽  
Sugata Barui ◽  
Sivapriya Kirubakaran ◽  
Parul Duhan ◽  
Kaushik Bhowmik

Background: The importance of inhibiting the kinases of the DDR pathway for radiosensitizing cancer cells is well established. Cancer cells exploit these kinases for their survival, which leads to the development of resistance towards DNA damaging therapeutics. Objective: In this article, the focus is on targeting the key mediator of the DDR pathway, the ATM kinase. A new set of quinoline-3-carboxamides, as potential inhibitors of ATM, is reported. Methods: Quinoline-3-carboxamide derivatives were synthesized and cytotoxicity assay was performed to analyze the effect of molecules on different cancer cell lines like HCT116, MDA-MB-468, and MDA-MB-231. Results: Three of the synthesized compounds showed promising cytotoxicity towards a selected set of cancer cell lines. Western Blot analysis was also performed by pre-treating the cells with quercetin, a known ATM upregulator, by causing DNA double-strand breaks. SAR studies suggested the importance of the electron-donating nature of the R group for the molecule to be toxic. Finally, Western-Blot analysis confirmed the down-regulation of ATM in the cells. Additionally, the PTEN negative cell line, MDA-MB-468, was more sensitive towards the compounds in comparison with the PTEN positive cell line, MDA-MB-231. Cytotoxicity studies against 293T cells showed that the compounds were at least three times less toxic when compared with HCT116. Conclusion: In conclusion, these experiments will lay the groundwork for the evolution of potent and selective ATM inhibitors for the radio- and chemo-sensitization of cancer cells.


2020 ◽  
Vol 20 (9) ◽  
pp. 1147-1156
Author(s):  
Hanrui Li ◽  
GeTao Du ◽  
Lu Yang ◽  
Liaojun Pang ◽  
Yonghua Zhan

Background: Hepatocellular carcinoma is cancer with many new cases and the highest mortality rate. Chemotherapy is the most commonly used method for the clinical treatment of hepatocellular carcinoma. Natural products have become clinically important chemotherapeutic drugs due to their great potential for pharmacological development. Many sesquiterpene lactone compounds have been proven to have antitumor effects on hepatocellular carcinoma. Objective: Britanin is a sesquiterpene lactone compound that can be considered for the treatment of hepatocellular carcinoma. The present study aimed to investigate the antitumor effect of britanin. Methods: BEL 7402 and HepG2 cells were used to study the cytotoxicity and antitumor effects of britanin. Preliminary studies on the nuclear factor kappa B pathway were conducted by western blot analysis. A BEL 7402-luc subcutaneous tumor model was established for the in vivo antitumor studies of britanin. In vivo bioluminescence imaging was conducted to monitor changes in tumor size. Results: The results of the cytotoxicity analysis showed that the IC50 values for britanin in BEL 7402 and HepG2 cells were 2.702μM and 6.006μM, respectively. The results of the colony formation demonstrated that the number of cells in a colony was reduced significantly after britanin treatment. And the results of transwell migration assays showed that the migration ability of tumor cells was significantly weakened after treatment with britanin. Tumor size measurements and staining results showed that tumor size was inhibited after britanin treatment. The western blot analysis results showed the inhibition of p65 protein expression and reduced the ratio of Bcl-2/Bax after treatment. Conclusion: A series of in vitro and in vivo experiments demonstrated that britanin had good antitumor effects and provided an option for hepatocellular carcinoma treatment.


Nutrients ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 2794 ◽  
Author(s):  
Cao ◽  
Chen ◽  
Ren ◽  
Zhang ◽  
Tan ◽  
...  

Punicalagin, a hydrolysable tannin of pomegranate juice, exhibits multiple biological effects, including inhibiting production of pro-inflammatory cytokines in macrophages. Autophagy, an intracellular self-digestion process, has been recently shown to regulate inflammatory responses. In this study, we investigated the anti-inflammatory potential of punicalagin in lipopolysaccharide (LPS) induced RAW264.7 macrophages and uncovered the underlying mechanisms. Punicalagin significantly attenuated, in a concentration-dependent manner, LPS-induced release of NO and decreased pro-inflammatory cytokines TNF-α and IL-6 release at the highest concentration. We found that punicalagin inhibited NF-κB and MAPK activation in LPS-induced RAW264.7 macrophages. Western blot analysis revealed that punicalagin pre-treatment enhanced LC3II, p62 expression, and decreased Beclin1 expression in LPS-induced macrophages. MDC assays were used to determine the autophagic process and the results worked in concert with Western blot analysis. In addition, our observations indicated that LPS-induced releases of NO, TNF-α, and IL-6 were attenuated by treatment with autophagy inhibitor chloroquine, suggesting that autophagy inhibition participated in anti-inflammatory effect. We also found that punicalagin downregulated FoxO3a expression, resulting in autophagy inhibition. Overall these results suggested that punicalagin played an important role in the attenuation of LPS-induced inflammatory responses in RAW264.7 macrophages and that the mechanisms involved downregulation of the FoxO3a/autophagy signaling pathway.


Sign in / Sign up

Export Citation Format

Share Document