scholarly journals The Rhizobium etli cyaC Product: Characterization of a Novel Adenylate Cyclase Class

2002 ◽  
Vol 184 (13) ◽  
pp. 3560-3568 ◽  
Author(s):  
Juan Téllez-Sosa ◽  
Nora Soberón ◽  
Alicia Vega-Segura ◽  
María E. Torres-Márquez ◽  
Miguel A. Cevallos

ABSTRACT Adenylate cyclases (ACs) catalyze the formation of 3′,5′-cyclic AMP (cAMP) from ATP. A novel AC-encoding gene, cyaC, was isolated from Rhizobium etli by phenotypic complementation of an Escherichia coli cya mutant. The functionality of the cyaC gene was corroborated by its ability to restore cAMP accumulation in an E. coli cya mutant. Further, overexpression of a malE::cyaC fusion protein allowed the detection of significant AC activity levels in cell extracts of an E. coli cya mutant. CyaC is unrelated to any known AC or to any other protein exhibiting a currently known function. Thus, CyaC represents the first member of a novel class of ACs (class VI). Hypothetical genes of unknown function similar to cyaC have been identified in the genomes of the related bacterial species Mesorhizobium loti, Sinorhizobium meliloti, and Agrobacterium tumefaciens. The cyaC gene is cotranscribed with a gene similar to ohr of Xanthomonas campestris and is expressed only in the presence of organic hydroperoxides. The physiological performance of an R. etli cyaC mutant was indistinguishable from that of the wild-type parent strain both under free-living conditions and during symbiosis.

mSphere ◽  
2018 ◽  
Vol 3 (6) ◽  
Author(s):  
Xiongfeng Dai ◽  
Zichu Shen ◽  
Yiheng Wang ◽  
Manlu Zhu

ABSTRACTBacterial cells need to coordinate the cell cycle with biomass growth to maintain cell size homeostasis. For fast-growing bacterial species likeEscherichia coliandBacillus subtilis, it is well-known that cell size exhibits a strong dependence on the growth rate under different nutrient conditions (known as the nutrient growth law). However, cell size changes little with slow growth (doubling time of >90 min) forE. coli, posing the interesting question of whether slow-growing bacteria species also observe the nutrient growth law. Here, we quantitatively characterize the cell size and cell cycle parameter of a slow-growing bacterium,Sinorhizobium meliloti, at different nutrient conditions. We find thatS. melilotiexhibits a threefold change in its cell size when its doubling time varies from 2 h to 6 h. Moreover, the progression rate of its cell cycle is much longer than that ofE. coli, suggesting a delicate coordination between the cell cycle progression rate and the biomass growth rate. Our study shows that the nutrient growth law holds robustly regardless of the growth capacity of the bacterial species, generalizing its applicability among the bacterial kingdom.IMPORTANCEThe dependence of cell size on growth rate is a fundamental principle in the field of bacterial cell size regulation. Previous studies of cell size regulation mainly focus on fast-growing bacterial species such asEscherichia coliandBacillussubtilis. We find here thatSinorhizobium meliloti, a slow-growing bacterium, exhibits a remarkable growth rate-dependent cell size pattern under nutrient limitation, generalizing the applicability of the empirical nutrient growth law of cell size. Moreover,S. melilotiexhibits a much slower speed of cell cycle progression thanE. colidoes, suggesting a delicate coordination between the cell cycle progression rate and the biomass growth rate.


2016 ◽  
Vol 29 (1) ◽  
pp. 37-40
Author(s):  
Amna Ali ◽  
M Saleem Haider ◽  
Sobia Mushtaq ◽  
Ibatsam Khokhar ◽  
Irum Mukhtar ◽  
...  

The antimicrobial agents of bacteria isolated from different rhizosphere of fruits and vegetables soil in Lahore. Of ten species, five were gram-negative (Escherichia coli, Pseudomonas fluorescence, Klebsiella pneumoniae, Salmonella typhii, Brachybacterium faecium); other five were gram positive and identified as Bacillus farraginis, Kurthia gibsonii, Aureobacterium liquefaciens, Curtobacterium albidum, Micrococcus lylae. The antagonistic potential of bacterial strains was assessed by the well diffusion technique and results indicating varying degree of biocontrol activity against pathogenic strain of X. campestris. Out of ten bacterial species, E. coli (gram negative) and C. albidum (gram positive) showed a high prevalence of resistance with reduction of 4.2cm and 4.1cm zone diameter respectively. The minimum inhibitory volume (MIV) to two bio-agents was determined for X. campestris from range 10-100 ?L. E. coli (volume required to inhibit < 20 ?L) and C. albidum (volume required to inhibit < 40 ?L) exhibited good activity against pathogen. These results provide information on the prevalence of resistant bacterial strains with the MIV of organisms and indicate the possibility of using these bacterial species as bio-agent against X. campestris.Bangladesh J Microbiol, Volume 29, Number 1, June 2012, pp 37-40


2006 ◽  
Vol 189 (5) ◽  
pp. 1884-1889 ◽  
Author(s):  
Alycia N. Bittner ◽  
Amanda Foltz ◽  
Valerie Oke

ABSTRACT Many bacterial species contain multiple copies of the genes that encode the chaperone GroEL and its cochaperone, GroES, including all of the fully sequenced root-nodulating bacteria that interact symbiotically with legumes to generate fixed nitrogen. In particular, in Sinorhizobium meliloti there are four groESL operons and one groEL gene. To uncover functional redundancies of these genes during growth and symbiosis, we attempted to construct strains containing all combinations of groEL mutations. Although a double groEL1 groEL2 mutant cannot be constructed, we demonstrate that the quadruple groEL1 groESL3 groEL4 groESL5 and groEL2 groESL3 groEL4 groESL5 mutants are viable. Therefore, like E. coli and other species, S. meliloti requires only one groEL gene for viability, and either groEL1 or groEL2 will suffice. The groEL1 groESL5 double mutant is more severely affected for growth at both 30°C and 40°C than the single mutants, suggesting overlapping functions in stress response. During symbiosis the quadruple groEL2 groESL3 groEL4 groESL5 mutant acts like the wild type, but the quadruple groEL1 groESL3 groEL4 groESL5 mutant acts like the groEL1 single mutant, which cannot fully induce nod gene expression and forms ineffective nodules. Therefore, the only groEL gene required for symbiosis is groEL1. However, we show that the other groE genes are expressed in the nodule at lower levels, suggesting minor roles during symbiosis. Combining our data with other data, we conclude that groESL1 encodes the housekeeping GroEL/GroES chaperone and that groESL5 is specialized for stress response.


2011 ◽  
Vol 4 (2) ◽  
pp. 169-176 ◽  
Author(s):  
M. Elaasser ◽  
R. El Kassas

Aflatoxin contamination of food and grain poses a serious economic and health problem worldwide. Aflatoxin B1 (AFB1) is extremely mutagenic, toxic and a potent carcinogen to both humans and livestock. A safe, effective and environmentally sound detoxification method is needed for controlling this toxin. In this study, 21 soil samples were screened from various sources with vast microbial populations using a coumarin containing medium. Eleven bacterial isolates showing AFB1 reduction activity in a liquid culture medium were selected from the screening experiments. Isolate 12-3 and 12-5, obtained from soil samples of Kafr-Zaiat Pesticide company drainage and identified to be Pseudomonas putida and Escherichia coli, reduced AFB1 by 69.3% and 58.8%, respectively, after incubation in the liquid medium at 37 °C for 72 h. The culture supernatant of these isolates was able to reduce AFB1 effectively by 76.2% and 62.5%, respectively, whereas the viable cells and cell extracts were far less effective. Factors influencing AFB1 detoxification by the culture supernatant were investigated. The highest detoxification activity for P. putida and E. coli was 83.3% and 63.8%, respectively, at pH 8 and 30 °C for 72 h. The detoxification activity was reduced at 10, 20 and 45 °C. The Mg2+, Mn2+, Se and Cu2+ ions were activators for AFB1 detoxification. However, Zn2+ ion was a strong inhibitor. Treatments with proteinase K, proteinase K plus SDS and heating significantly reduced or eradicated the detoxification activity of the culture supernatant. In conclusion, the detoxification of AFB1 by P. putida 12-3 was enzymatic and the enzymes responsible for the detoxification of AFB1 are constitutively extracellular produced. Also, the AFB1 detoxification by E. coli was conducted by enzymes as well as by cell wall binding mechanism. Both bacteria could have great potential in industrial applications.


2001 ◽  
Vol 67 (9) ◽  
pp. 4105-4110 ◽  
Author(s):  
Sunggi Heu ◽  
Jonghee Oh ◽  
Youngsung Kang ◽  
Sangryeol Ryu ◽  
Somi K. Cho ◽  
...  

ABSTRACT Glycinecin A, a bacteriocin produced by Xanthomonas campestris pv. glycines, inhibits the growth of X. campestris pv. vesicatoria. We have cloned and expressed the genes encoding glycinecin A in Escherichia coli. Recombinant glycinecin A was purified from cell extracts by ammonium sulfate precipitation followed by chromatography on Q-Sepharose, Mono Q (ion exchange), and size exclusion columns. Purified glycinecin A is composed of two polypeptides, is active over a wide pH range (6 to 9), and is stable at temperatures up to 60°C. Glycinecin A is a heterodimer consisting of 39- and 14-kDa subunits, as revealed through size exclusion chromatography and cross-linking analysis. Two genes,glyA and glyB, encoding the 39- and 14-kDa subunits, respectively, were identified based on the N-terminal sequences of the subunits. From the nucleotide sequences ofglyA and glyB, we conclude that both genes are translated as bacteriocin precursors that include N-terminal leader sequences. When expressed in E. coli, recombinant glycinecin A was found primarily in cell extracts. In contrast, most glycinecin A from Xanthomonas was found in the culture media. E. coli transformed with eitherglyA or glyB separately did not show the bacteriocin activity.


1999 ◽  
Vol 181 (17) ◽  
pp. 5280-5287 ◽  
Author(s):  
A. Pia Abola ◽  
Michael G. Willits ◽  
Richard C. Wang ◽  
Sharon R. Long

ABSTRACT We have cloned and sequenced three genes from Rhizobium meliloti (Sinorhizobium meliloti) that are involved in sulfate activation for cysteine biosynthesis. Two of the genes display homology to the Escherichia coli cysDN genes, which code for an ATP sulfurylase (EC 2.7.7.4 ). The third gene has homology to the E. coli cysH gene, a 3′-phosphoadenosine-5′-phosphosulfate (PAPS) reductase (EC 1.8.99.4 ), but has greater homology to a set of genes found in Arabidopsis thaliana that encode an adenosine-5′-phosphosulfate (APS) reductase. In order to determine the specificity of the R. meliloti reductase, the R. meliloti cysH homolog was histidine tagged and purified, and its specificity was assayed in vitro. Like the A. thaliana reductases, the histidine-tagged R. meliloti cysH gene product appears to favor APS over PAPS as a substrate, with a Km for APS of 3 to 4 μM but a Km for PAPS of >100 μM. In order to determine whether this preference for APS is unique to R. meliloti among members of the familyRhizobiaceae or is more widespread, cell extracts fromR. leguminosarum, Rhizobium sp. strain NGR234,Rhizobium fredii (Sinorhizobium fredii), andAgrobacterium tumefaciens were assayed for APS or PAPS reductase activity. Cell extracts from all four species also preferentially reduce APS over PAPS.


Author(s):  
K.K. Gupta ◽  
Neha Kumari ◽  
Neha Sinha ◽  
Akruti Gupta

Biogenic synthesis of silver nanoparticles synthesized from Hymenocallis species (Spider Lilly) leaf extract was subjected for investigation of its antimicrobial property against four bacterial species (E. coli, Salmonella sp., Streptococcus sp. & Staphylococcus sp.). The results revealed that synthesized nanoparticles solution very much justify the color change property from initial light yellow to final reddish brown during the synthesis producing a characteristics absorption peak in the range of 434-466 nm. As antimicrobial agents, their efficacy was evaluated by analysis of variance in between the species and among the different concentration of AgNPs solution, which clearly showed that there was significant variation in the antibiotic property between the four different concentrations of AgNPs solution and also among four different species of bacteria taken under studies. However, silver nanoparticles solution of 1: 9 and 1:4 were proved comparatively more efficient as antimicrobial agents against four species of bacteria.


2020 ◽  
Vol 20 (29) ◽  
pp. 2681-2691
Author(s):  
Athina Geronikaki ◽  
Victor Kartsev ◽  
Phaedra Eleftheriou ◽  
Anthi Petrou ◽  
Jasmina Glamočlija ◽  
...  

Background: Although a great number of the targets of antimicrobial therapy have been achieved, it remains among the first fields of pharmaceutical research, mainly because of the development of resistant strains. Docking analysis may be an important tool in the research for the development of more effective agents against specific drug targets or multi-target agents 1-3. Methods: In the present study, based on docking analysis, ten tetrahydrothiazolo[2,3-a]isoindole derivatives were chosen for the evaluation of the antimicrobial activity. Results: All compounds showed antibacterial activity against eight Gram-positive and Gram-negative bacterial species being, in some cases, more potent than ampicillin and streptomycin against all species. The most sensitive bacteria appeared to be S. aureus and En. Cloacae, while M. flavus, E. coli and P. aeruginosa were the most resistant ones. The compounds were also tested for their antifungal activity against eight fungal species. All compounds exhibited good antifungal activity better than reference drugs bifonazole (1.4 – 41 folds) and ketoconazole (1.1 – 406 folds) against all fungal species. In order to elucidate the mechanism of action, docking studies on different antimicrobial targets were performed. Conclusion: According to docking analysis, the antifungal activity can be explained by the inhibition of the CYP51 enzyme for most compounds with a better correlation of the results obtained for the P.v.c. strain (linear regression between estimated binding Energy and log(1/MIC) with R 2 =0.867 and p=0.000091 or R 2 = 0.924, p= 0.000036, when compound 3 is excluded.


2012 ◽  
Vol 78 (15) ◽  
pp. 5238-5246 ◽  
Author(s):  
Dongfei Han ◽  
Ji-Young Ryu ◽  
Robert A. Kanaly ◽  
Hor-Gil Hur

ABSTRACTA plasmid, pTA163, inEscherichia colicontained an approximately 34-kb gene fragment fromPseudomonas putidaJYR-1 that included the genes responsible for the metabolism oftrans-anethole to protocatechuic acid. Three Tn5-disrupted open reading frame 10 (ORF 10) mutants of plasmid pTA163 lost their abilities to catalyzetrans-anethole. Heterologously expressed ORF 10 (1,047 nucleotides [nt]) under a T7 promoter inE. colicatalyzed oxidative cleavage of a propenyl group oftrans-anethole to an aldehyde group, resulting in the production ofpara-anisaldehyde, and this gene was designatedtao(trans-anetholeoxygenase). The deduced amino acid sequence of TAO had the highest identity (34%) to a hypothetical protein ofAgrobacterium vitisS4 and likely contained a flavin-binding site. Preferred incorporation of an oxygen molecule from water intop-anisaldehyde using18O-labeling experiments indicated stereo preference of TAO for hydrolysis of the epoxide group. Interestingly, unlike the narrow substrate range of isoeugenol monooxygenase fromPseudomonas putidaIE27 andPseudomonas nitroreducensJin1, TAO fromP. putidaJYR-1 catalyzed isoeugenol,O-methyl isoeugenol, and isosafrole, all of which contain the 2-propenyl functional group on the aromatic ring structure. Addition of NAD(P)H to the ultrafiltered cell extracts ofE. coli(pTA163) increased the activity of TAO. Due to the relaxed substrate range of TAO, it may be utilized for the production of various fragrance compounds from plant phenylpropanoids in the future.


2020 ◽  
Vol 9 (1) ◽  
pp. 55
Author(s):  
María Florencia Eberhardt ◽  
José Matías Irazoqui ◽  
Ariel Fernando Amadio

Stabilization ponds are a common treatment technology for wastewater generated by dairy industries. Large proportions of cheese whey are thrown into these ponds, creating an environmental problem because of the large volume produced and the high biological and chemical oxygen demands. Due to its composition, mainly lactose and proteins, it can be considered as a raw material for value-added products, through physicochemical or enzymatic treatments. β-Galactosidases (EC 3.2.1.23) are lactose modifying enzymes that can transform lactose in free monomers, glucose and galactose, or galactooligosacharides. Here, the identification of novel genes encoding β-galactosidases, identified via whole-genome shotgun sequencing of the metagenome of dairy industries stabilization ponds is reported. The genes were selected based on the conservation of catalytic domains, comparing against the CAZy database, and focusing on families with β-galactosidases activity (GH1, GH2 and GH42). A total of 394 candidate genes were found, all belonging to bacterial species. From these candidates, 12 were selected to be cloned and expressed. A total of six enzymes were expressed, and five cleaved efficiently ortho-nitrophenyl-β-galactoside and lactose. The activity levels of one of these novel β-galactosidase was higher than other enzymes reported from functional metagenomics screening and higher than the only enzyme reported from sequence-based metagenomics. A group of novel mesophilic β-galactosidases from diary stabilization ponds’ metagenomes was successfully identified, cloned and expressed. These novel enzymes provide alternatives for the production of value-added products from dairy industries’ by-products.


Sign in / Sign up

Export Citation Format

Share Document