scholarly journals CpsE from Type 2 Streptococcus pneumoniae Catalyzes the Reversible Addition of Glucose-1-Phosphate to a Polyprenyl Phosphate Acceptor, Initiating Type 2 Capsule Repeat Unit Formation

2005 ◽  
Vol 187 (21) ◽  
pp. 7425-7433 ◽  
Author(s):  
Robert T. Cartee ◽  
W. Thomas Forsee ◽  
Matthew H. Bender ◽  
Karita D. Ambrose ◽  
Janet Yother

ABSTRACT The majority of the 90 capsule types made by the gram-positive pathogen Streptococcus pneumoniae are assembled by a block-type mechanism similar to that utilized by the Wzy-dependent O antigens and capsules of gram-negative bacteria. In this mechanism, initiation of repeat unit formation occurs by the transfer of a sugar to a lipid acceptor. In S. pneumoniae, this step is catalyzed by CpsE, a protein conserved among the majority of capsule types. Membranes from S. pneumoniae type 2 strain D39 and Escherichia coli containing recombinant Cps2E catalyzed incorporation of [14C]Glc from UDP-[14C]Glc into a lipid fraction in a Cps2E-dependent manner. The Cps2E-dependent glycolipid product from both membranes was sensitive to mild acid hydrolysis, suggesting that Cps2E was catalyzing the formation of a polyprenyl pyrophosphate Glc. Addition of exogenous polyprenyl phosphates ranging in size from 35 to 105 carbons to D39 and E. coli membranes stimulated Cps2E activity. The stimulation was due, in part, to utilization of the exogenous polyprenyl phosphates as an acceptor. The glycolipid product synthesized in the absence of exogenous polyprenyl phosphates comigrated with a 60-carbon polyprenyl pyrophosphate Glc. When 10 or 100 μM UMP was added to reaction mixtures containing D39 membranes, Cps2E activity was inhibited 40% and 80%, respectively. UMP, which acted as a competitive inhibitor of UDP-Glc, also stimulated Cps2E to catalyze the reverse reaction, with synthesis of UDP-Glc from the polyprenyl pyrophosphate Glc. These data indicated that Cps2E was catalyzing the addition of Glc-1-P to a polyprenyl phosphate acceptor, likely undecaprenyl phosphate.

2012 ◽  
Vol 194 (23) ◽  
pp. 6479-6489 ◽  
Author(s):  
David B. A. James ◽  
Janet Yother

ABSTRACTFive genes (cps2E,cps2T,cps2F,cps2G, andcps2I) are predicted to encode the glycosyltransferases responsible for synthesis of theStreptococcus pneumoniaeserotype 2 capsule repeat unit, which is polymerized to yield a branched surface structure containing glucose-glucuronic acid linked to a glucose-rhamnose-rhamnose-rhamnose backbone. Cps2E is the initiating glycosyltransferase, but experimental evidence supporting the functions of the remaining glycosyltransferases is lacking. To biochemically characterize the glycosyltransferases, the donor substrate dTDP-rhamnose was first synthesized using recombinantS. pneumoniaeenzymes Cps2L, Cps2M, Cps2N, and Cps2O. Inin vitroassays with each of the glycosyltransferases, only reaction mixtures containing recombinant Cps2T, dTDP-rhamnose, and the Cps2E product (undecaprenyl pyrophosphate glucose) generated a new product, which was consistent with lipid-linked glucose-rhamnose.cps2T,cps2F, andcps2Ideletion mutants produced no detectable capsule, but trace amounts of capsule were detectable in Δcps2Gmutants, suggesting that Cps2G adds a nonbackbone sugar. All Δcps2F, Δcps2G, and Δcps2Imutants contained different secondary suppressor mutations incps2E, indicating that the initial mutations were lethal in the absence of reduced repeat unit synthesis. Δcps2Tmutants did not contain secondary mutations affecting capsule synthesis. The requirement for secondary mutations in mutants lacking Cps2F, Cps2G, and Cps2I indicates that these activities occur downstream of the committed step in capsule synthesis and reveal that Cps2T catalyzes this step. Therefore, Cps2T is the β1-4 rhamnosyltransferase that adds the second sugar to the repeat unit and, as the committed step in type 2 repeat unit synthesis, is predicted to be an important point of capsule regulation.


2014 ◽  
Vol 84 (1-2) ◽  
pp. 27-34 ◽  
Author(s):  
Nasser M. Al-Daghri ◽  
Khalid M. Alkharfy ◽  
Nasiruddin Khan ◽  
Hanan A. Alfawaz ◽  
Abdulrahman S. Al-Ajlan ◽  
...  

The aim of our study was to evaluate the effects of vitamin D supplementation on circulating levels of magnesium and selenium in patients with type 2 diabetes mellitus (T2DM). A total of 126 adult Saudi patients (55 men and 71 women, mean age 53.6 ± 10.7 years) with controlled T2DM were randomly recruited for the study. All subjects were given vitamin D3 tablets (2000 IU/day) for six months. Follow-up mean concentrations of serum 25-hydroxyvitamin D [25-(OH) vitamin D] significantly increased in both men (34.1 ± 12.4 to 57.8 ± 17.0 nmol/L) and women (35.7 ± 13.5 to 60.1 ± 18.5 nmol/L, p < 0.001), while levels of parathyroid hormone (PTH) decreased significantly in both men (1.6 ± 0.17 to 0.96 ± 0.10 pmol/L, p = 0.003) and women (1.6 ± 0.17 to 1.0 ± 0.14 pmol/L, p = 0.02). In addition, there was a significant increase in serum levels of selenium and magnesium in men and women (p-values < 0.001 and 0.04, respectively) after follow-up. In women, a significant correlation was observed between delta change (variables at six months-variable at baseline) of serum magnesium versus high-density lipoprotein (HDL)-cholesterol (r = 0.36, p = 0.006) and fasting glucose (r = - 0.33, p = 0.01). In men, there was a significant correlation between serum selenium and triglycerides (r = 0.32, p = 0.04). Vitamin D supplementation improves serum concentrations of magnesium and selenium in a gender-dependent manner, which in turn could affect several cardiometabolic parameters such as glucose and lipids.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Xuewen Wu ◽  
Li Zhang ◽  
Yihui Li ◽  
Wenjuan Zhang ◽  
Jianjun Wang ◽  
...  

AbstractMutations in voltage-gated potassium channel KCNE1 cause Jervell and Lange-Nielsen syndrome type 2 (JLNS2), resulting in congenital deafness and vestibular dysfunction. We conducted gene therapy by injecting viral vectors using the canalostomy approach in Kcne1−/− mice to treat both the hearing and vestibular symptoms. Results showed early treatment prevented collapse of the Reissner’s membrane and vestibular wall, retained the normal size of the semicircular canals, and prevented the degeneration of inner ear cells. In a dose-dependent manner, the treatment preserved auditory (16 out of 20 mice) and vestibular (20/20) functions in mice treated with the high-dosage for at least five months. In the low-dosage group, a subgroup of mice (13/20) showed improvements only in the vestibular functions. Results supported that highly efficient transduction is one of the key factors for achieving the efficacy and maintaining the long-term therapeutic effect. Secondary outcomes of treatment included improved birth and litter survival rates. Our results demonstrated that gene therapy via the canalostomy approach, which has been considered to be one of the more feasible delivery methods for human inner ear gene therapy, preserved auditory and vestibular functions in a dose-dependent manner in a mouse model of JLNS2.


2004 ◽  
Vol 286 (5) ◽  
pp. C1109-C1117 ◽  
Author(s):  
Liang Guo ◽  
Dawn Pietkiewicz ◽  
Evgeny V. Pavlov ◽  
Sergey M. Grigoriev ◽  
John J. Kasianowicz ◽  
...  

Recent studies indicate that cytochrome c is released early in apoptosis without loss of integrity of the mitochondrial outer membrane in some cell types. The high-conductance mitochondrial apoptosis-induced channel (MAC) forms in the outer membrane early in apoptosis of FL5.12 cells. Physiological (micromolar) levels of cytochrome c alter MAC activity, and these effects are referred to as types 1 and 2. Type 1 effects are consistent with a partitioning of cytochrome c into the pore of MAC and include a modest decrease in conductance that is dose and voltage dependent, reversible, and has an increase in noise. Type 2 effects may correspond to “plugging” of the pore or destabilization of the open state. Type 2 effects are a dose-dependent, voltage-independent, and irreversible decrease in conductance. MAC is a heterogeneous channel with variable conductance. Cytochrome c affects MAC in a pore size-dependent manner, with maximal effects of cytochrome c on MAC with conductance of 1.9–5.4 nS. The effects of cytochrome c, RNase A, and high salt on MAC indicate that size, rather than charge, is crucial. The effects of dextran molecules of various sizes indicate that the pore diameter of MAC is slightly larger than that of 17-kDa dextran, which should be sufficient to allow the passage of 12-kDa cytochrome c. These findings are consistent with the notion that MAC is the pore through which cytochrome c is released from mitochondria during apoptosis.


2001 ◽  
Vol 281 (4) ◽  
pp. R1114-R1118 ◽  
Author(s):  
Tetsuro Shirasaka ◽  
Satoshi Miyahara ◽  
Takato Kunitake ◽  
Qing-Hua Jin ◽  
Kazuo Kato ◽  
...  

Orexins, also called hypocretins, are newly discovered hypothalamic peptides that are thought to be involved in various physiological functions. In spite of the fact that orexin receptors, especially orexin receptor 2, are abundant in the hypothalamic paraventricular nucleus (PVN), the effects of orexins on PVN neurons remain unknown. Using a whole cell patch-clamp recording technique, we investigated the effects of orexin-B on PVN neurons of rat brain slices. Bath application of orexin-B (0.01–1.0 μM) depolarized 80.8% of type 1 ( n = 26) and 79.2% of type 2 neurons tested ( n = 24) in the PVN in a concentration-dependent manner. The effects of orexin-B persisted in the presence of TTX (1 μM), indicating that these depolarizing effects were generated postsynaptically. Addition of Cd2+(1 mM) to artificial cerebrospinal fluid containing TTX (1 μM) significantly reduced the depolarizing effect in type 2 neurons. These results suggest that orexin-B has excitatory effects on the PVN neurons mediated via a depolarization of the membrane potential.


Blood ◽  
2002 ◽  
Vol 99 (12) ◽  
pp. 4400-4405 ◽  
Author(s):  
Suzanne Burns ◽  
Murat O. Arcasoy ◽  
Li Li ◽  
Elizabeth Kurian ◽  
Katri Selander ◽  
...  

A drug that specifically inhibits erythropoiesis would be clinically useful. The erythropoietin (Epo) mutant Epo (R103A) could potentially be used for this purpose. Epo (R103A) has a single amino acid substitution of alanine for arginine at position 103. Because of this mutation, Epo (R103A) is only able to bind to one of the 2 subunits of the erythropoietin receptor (EpoR) homodimer and is thus a competitive inhibitor of Epo activity. To produce large quantities of Epo (R103A) to test in animal models of thalassemia and sickle cell disease, we expressed and purified recombinant Epo (R103A) from the yeast Pichia pastoris. Using this method milligram quantities of highly purified Epo (R103A) are obtained. The yeast-expressed Epo (R103A) is properly processed and glycosylated and specifically inhibits Epo-dependent cell growth and125I-Epo binding. Epo (R103A) does not, however, directly induce apoptosis in 32D cells expressing EpoR. Epo (R103A) inhibits erythropoiesis of human CD34+ hematopoietic cells and completely blocks erythroid burst-forming unit formation in normal human bone marrow colony assays. Yeast-expressed Epo (R103A) is a specific inhibitor of primary erythropoiesis suitable for testing in animal models.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Ganiyu Oboh ◽  
Ayokunle O. Ademosun ◽  
Adedayo O. Ademiluyi ◽  
Olasunkanmi S. Omojokun ◽  
Esther E. Nwanna ◽  
...  

Background. This study sought to investigate the antidiabetic and antihypertensive mechanisms of cocoa (Theobroma cacao) bean through inhibition of α-amylase, α-glucosidase, angiotensin-1 converting enzyme, and oxidative stress. Methodology. The total phenol and flavonoid contents of the water extractable phytochemicals from the powdered cocoa bean were determined and the effects of the extract on α-amylase, α-glucosidase, and angiotensin-1 converting enzyme activities were investigated in vitro. Furthermore, the radicals [1,1-diphenyl-2 picrylhydrazyl (DPPH), 2,2..-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS), hydroxyl (OH), and nitric oxide (NO)] scavenging ability and ferric reducing antioxidant property of the extract were assessed. Results. The results revealed that the extract inhibited α-amylase (1.81 ± 0.22 mg/mL), α-glucosidase (1.84 ± 0.17 mg/mL), and angiotensin-1 converting enzyme (0.674 ± 0.06 mg/mL [lungs], 1.006 ± 0.08 mg/mL [heart]) activities in a dose-dependent manner and also showed dose-dependent radicals [DPPH (16.94 ± 1.34 mg/mL), NO (6.98 ± 0.886 mg/mL), OH (3.72 ± 0.26 mg/mL), and ABTS (15.7 ± 1.06 mmol/TEAC·g] scavenging ability. Conclusion. The inhibition of α-amylase, α-glucosidase, and angiotensin-1 converting enzyme activities by the cocoa bean extract could be part of the possible mechanism by which the extract could manage and/or prevent type-2 diabetes and hypertension.


2006 ◽  
Vol 291 (4) ◽  
pp. C726-C739 ◽  
Author(s):  
Monica C. Chen ◽  
S. Vincent Wu ◽  
Joseph R. Reeve ◽  
Enrique Rozengurt

We previously demonstrated the expression of bitter taste receptors of the type 2 family (T2R) and the α-subunits of the G protein gustducin (Gαgust) in the rodent gastrointestinal (GI) tract and in GI endocrine cells. In this study, we characterized mechanisms of Ca2+ fluxes induced by two distinct T2R ligands: denatonium benzoate (DB) and phenylthiocarbamide (PTC), in mouse enteroendocrine cell line STC-1. Both DB and PTC induced a marked increase in intracellular [Ca2+] ([Ca2+]i) in a dose- and time-dependent manner. Chelating extracellular Ca2+ with EGTA blocked the increase in [Ca2+]i induced by either DB or PTC but, in contrast, did not prevent the effect induced by bombesin. Thapsigargin blocked the transient increase in [Ca2+]i induced by bombesin, but did not attenuate the [Ca2+]i increase elicited by DB or PTC. These results indicate that Ca2+ influx mediates the increase in [Ca2+]i induced by DB and PTC in STC-1 cells. Preincubation with the L-type voltage-sensitive Ca2+ channel (L-type VSCC) blockers nitrendipine or diltiazem for 30 min inhibited the increase in [Ca2+]i elicited by DB or PTC. Furthermore, exposure to the L-type VSCCs opener BAY K 8644 potentiated the increase in [Ca2+]i induced by DB and PTC. Stimulation with DB also induced a marked increase in the release of cholecystokinin from STC-1 cells, an effect also abrogated by prior exposure to EGTA or L-type VSCC blockers. Collectively, our results demonstrate that bitter tastants increase [Ca2+]i and cholecystokinin release through Ca2+ influx mediated by the opening of L-type VSCCs in enteroendocrine STC-1 cells.


2013 ◽  
Vol 20 (5) ◽  
pp. 639-650 ◽  
Author(s):  
Katherine H. Restori ◽  
Mary J. Kennett ◽  
A. Catharine Ross

ABSTRACTVaccination reduces morbidity and mortality from pneumonia, but its effect on the tissue-level response to infection is still poorly understood. We evaluated pneumonia disease progression, acute-phase response, and lung gene expression profiles in mice inoculated intranasally with virulent Gram-positiveStreptococcus pneumoniaeserotype 3 (ST 3) with and without prior immunization with pneumococcal polysaccharide ST 3 (PPS3) or after coimmunization with PPS3 and a low dose of lipopolysaccharide (PPS3+LPS). Pneumonia severity was assessed in the acute phase at 5, 12, 24 and 48 h postinoculation (p.i.) and in the resolution phase at 7 days p.i. Primary PPS3-specific antibody production was upregulated, and IgM binding to pneumococci increased in PPS3-immunized mice. Immunizations with PPS3 or PPS3+LPS decreased bacterial recovery in the lung and blood at 24 and 48 h and increased survival. Microarray analysis of whole-lung RNA revealed significant changes in the acute-phase protein serum amyloid A (SAA) levels between noninfected and infected mice, and these changes were attenuated by immunization. SAA transcripts were higher in the liver and lungs of infected controls, and SAA protein was elevated in serum but decreased in PPS3-immunized mice. Thus, during a virulent pneumonia infection, prior immunization with PPS3 in an IgM-dependent manner as well as immunization with PPS3+LPS attenuated pneumonia severity and promoted resolution of infection, concomitant with significant regulation of cytokine gene expression levels in the lungs and acute-phase proteins in the lungs, liver, and serum.


Sign in / Sign up

Export Citation Format

Share Document