scholarly journals Amino Acid-Dependent mTORC1 Regulation by the Lysosomal Membrane Protein SLC38A9

2015 ◽  
Vol 35 (14) ◽  
pp. 2479-2494 ◽  
Author(s):  
Jennifer Jung ◽  
Heide Marika Genau ◽  
Christian Behrends

The serine/threonine kinase mTORC1 regulates cellular homeostasis in response to many cues, such as nutrient status and energy level. Amino acids induce mTORC1 activation on lysosomes via the small Rag GTPases and the Ragulator complex, thereby controlling protein translation and cell growth. Here, we identify the human 11-pass transmembrane protein SLC38A9 as a novel component of the Rag-Ragulator complex. SLC38A9 localizes with Rag-Ragulator complex components on lysosomes and associates with Rag GTPases in an amino acid-sensitive and nucleotide binding state-dependent manner. Depletion of SLC38A9 inhibits mTORC1 activity in the presence of amino acids and in response to amino acid replenishment following starvation. Conversely, SLC38A9 overexpression causes RHEB (Ras homolog enriched in brain) GTPase-dependent hyperactivation of mTORC1 and partly sustains mTORC1 activity upon amino acid deprivation. Intriguingly, during amino acid starvation mTOR is retained at the lysosome upon SLC38A9 depletion but fails to be activated. Together, the findings of our study reveal SLC38A9 as a Rag-Ragulator complex member transducing amino acid availability to mTORC1 activity.

2019 ◽  
Vol 150 (5) ◽  
pp. 1022-1030 ◽  
Author(s):  
Dandan Xu ◽  
Weiwei Dai ◽  
Lydia Kutzler ◽  
Holly A Lacko ◽  
Leonard S Jefferson ◽  
...  

ABSTRACT Background The protein kinase target of rapamycin (mTOR) in complex 1 (mTORC1) is activated by amino acids and in turn upregulates anabolic processes. Under nutrient-deficient conditions, e.g., amino acid insufficiency, mTORC1 activity is suppressed and autophagy is activated. Intralysosomal amino acids generated by autophagy reactivate mTORC1. However, sustained mTORC1 activation during periods of nutrient insufficiency would likely be detrimental to cellular homeostasis. Thus, mechanisms must exist to prevent amino acids released by autophagy from reactivating the kinase. Objective The objective of the present study was to test whether mTORC1 activity is inhibited during prolonged leucine deprivation through ATF4-dependent upregulation of the mTORC1 suppressors regulated in development and DNA damage response 1 (REDD1) and Sestrin2. Methods Mice (8 wk old; C57Bl/6 × 129SvEV) were food deprived (FD) overnight and one-half were refed the next morning. Mouse embryo fibroblasts (MEFs) deficient in ATF4, REDD1, and/or Sestrin2 were deprived of leucine for 0–16 h. mTORC1 activity and ATF4, REDD1, and Sestrin2 expression were assessed in liver and cell lysates. Results Refeeding FD mice resulted in activation of mTORC1 in association with suppressed expression of both REDD1 and Sestrin2 in the liver. In cells in culture, mTORC1 exhibited a triphasic response to leucine deprivation, with an initial suppression followed by a transient reactivation from 2 to 4 h and a subsequent resuppression after 8 h. Resuppression occurred concomitantly with upregulated expression of ATF4, REDD1, and Sestrin2. However, in cells lacking ATF4, neither REDD1 nor Sestrin2 expression was upregulated by leucine deprivation, and resuppression of mTORC1 was absent. Moreover, in cells lacking either REDD1 or Sestrin2, mTORC1 resuppression was attenuated, and in cells lacking both proteins resuppression was further blunted. Conclusions The results suggest that leucine deprivation upregulates expression of both REDD1 and Sestrin2 in an ATF4-dependent manner, and that upregulated expression of both proteins is involved in resuppression of mTORC1 during prolonged leucine deprivation.


2021 ◽  
Vol 22 (13) ◽  
pp. 6897
Author(s):  
Yuna Amemiya ◽  
Nao Nakamura ◽  
Nao Ikeda ◽  
Risa Sugiyama ◽  
Chiaki Ishii ◽  
...  

Mechanistic target of rapamycin complex 1 (mTORC1) is a master growth regulator by controlling protein synthesis and autophagy in response to environmental cues. Amino acids, especially leucine and arginine, are known to be important activators of mTORC1 and to promote lysosomal translocation of mTORC1, where mTORC1 is thought to make contact with its activator Rheb GTPase. Although amino acids are believed to exclusively regulate lysosomal translocation of mTORC1 by Rag GTPases, how amino acids increase mTORC1 activity besides regulation of mTORC1 subcellular localization remains largely unclear. Here we report that amino acids also converge on regulation of the TSC2-Rheb GTPase axis via Ca2+/calmodulin (CaM). We showed that the amino acid-mediated increase of intracellular Ca2+ is important for mTORC1 activation and thereby contributes to the promotion of nascent protein synthesis. We found that Ca2+/CaM interacted with TSC2 at its GTPase activating protein (GAP) domain and that a CaM inhibitor reduced binding of CaM with TSC2. The inhibitory effect of a CaM inhibitor on mTORC1 activity was prevented by loss of TSC2 or by an active mutant of Rheb GTPase, suggesting that a CaM inhibitor acts through the TSC2-Rheb axis to inhibit mTORC1 activity. Taken together, in response to amino acids, Ca2+/CaM-mediated regulation of the TSC2-Rheb axis contributes to proper mTORC1 activation, in addition to the well-known lysosomal translocation of mTORC1 by Rag GTPases.


2020 ◽  
Vol 168 (6) ◽  
pp. 621-632
Author(s):  
Shigeyuki Nada ◽  
Masato Okada

Abstract Ragulator is a heteropentameric protein complex consisting of two roadblock heterodimers wrapped by the membrane anchor p18/Lamtor1. The Ragulator complex functions as a lysosomal membrane scaffold for Rag GTPases to recruit and activate mechanistic target of rapamycin complex 1 (mTORC1). However, the roles of Ragulator structure in the regulation of mTORC1 function remain elusive. In this study, we disrupted Ragulator structure by directly anchoring RagC to lysosomes and monitored the effect on amino acid-dependent mTORC1 activation. Expression of lysosome-anchored RagC in p18-deficient cells resulted in constitutive lysosomal localization and amino acid-independent activation of mTORC1. Co-expression of Ragulator in this system restored the amino acid dependency of mTORC1 activation. Furthermore, ablation of Gator1, a suppressor of Rag GTPases, induced amino acid-independent activation of mTORC1 even in the presence of Ragulator. These results demonstrate that Ragulator structure is essential for amino acid-dependent regulation of Rag GTPases via Gator1. In addition, our genetic analyses revealed new roles of amino acids in the regulation of mTORC1 as follows: amino acids could activate a fraction of mTORC1 in a Rheb-independent manner, and could also drive negative-feedback regulation of mTORC1 signalling via protein phosphatases. These intriguing findings contribute to our overall understanding of the regulatory mechanisms of mTORC1 signalling.


1991 ◽  
Vol 58 (4) ◽  
pp. 431-441 ◽  
Author(s):  
Thérèse Desrosiers ◽  
Laurent Savoie

SummaryThe effect of heat treatments, at various water activities (αw), on digestibility and on the availabilities of amino acids of whey protein samples in the presence of lactose was estimated by an in vitro digestion method with continuons dialysis. Four αw (0·3, 0·5, 0·7 and 0·97), three temperatures (75, 100 and 121 °C) and three heating periods (50, 500 and 5000 s) were selected. The initial lysine: lactose molar ratio was 1:1. Amino acid profiles showed that excessive heating of whey (121 °C, 5000 s) destroyed a significant proportion of cystine at all αw, lysine at αw 0·3, 0·5 and 0·7, and arginine at αw 0·5 and 0·7. At αw 0·3, 0·5 and 0·7, protein digestibility decreased (P < 0·05) as the temperature increased from 75 to 121 °C for a heating period of 5000 s, and as the heating time was prolonged from 500 to 5000 s at 121 °C. Excessive heating also decreased (P < 0·05) the availabilities of ail amino acids at αw 0·3, 0·5 and 0·7. The availabilities of lysine, proline, aspartic acid, glutamic acid, threonine, alanine, glycine and serine were particularly affected. Severe heating at αw 0·97 did not seem to favour the Maillard reaction, but the availabilities of cystine, tyrosine and arginine were decreased, probably as a result of structural modifications of the protein upon heating. Heating whey protein concentrates in the presence of lactose not only affected lysine, but also impaired enzymic liberation of other amino acids, according to the severity of heat treatments and αw.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yung Jae Kim ◽  
Byoung Jun Choi ◽  
Si Hyoung Park ◽  
Han Byeol Lee ◽  
Ji Eun Son ◽  
...  

Peptidoglycan (PG) hydrolases play important roles in various aspects of bacterial physiology, including cytokinesis, PG synthesis, quality control of PG, PG recycling, and antibiotic resistance. However, the regulatory mechanisms of their expression are poorly understood. In this study, we have uncovered novel regulatory mechanisms of the protein levels of the synthetically lethal PG endopeptidases MepS and MepM, which are involved in PG synthesis. A mutant defective for both MepS and MepM was lethal in an amino acid-rich medium, whereas it exhibited almost normal growth in a minimal medium, suggesting the expendability of MepS and MepM in a minimal medium. Protein levels of MepS and MepM dramatically decreased in the minimal medium. Although MepM was revealed as a substrate of Prc, a periplasmic protease involved in the proteolysis of MepS, only the decrease in the MepS level in the minimal medium was affected by the prc depletion. Phenotypic and biochemical analyses showed that the presence of aromatic amino acids in the medium induced the accumulation of MepS, but not MepM, while the presence of glutamate increased the level of MepM, but not MepS. Together, these results demonstrate that the protein levels of the two major PG endopeptidases are regulated in an amino acid availability-dependent manner, but their molecular mechanisms and signaling are significantly distinct.


1998 ◽  
Vol 64 (8) ◽  
pp. 2836-2843 ◽  
Author(s):  
Cengiz Atasoglu ◽  
Carmen Valdés ◽  
Nicola D. Walker ◽  
C. James Newbold ◽  
R. John Wallace

ABSTRACT The influence of peptides and amino acids on ammonia assimilation and de novo synthesis of amino acids by three predominant noncellulolytic species of ruminal bacteria, Prevotella bryantii B14, Selenomonas ruminantiumHD4, and Streptococcus bovis ES1, was determined by growing these bacteria in media containing 15NH4Cl and various additions of pancreatic hydrolysates of casein (peptides) or amino acids. The proportion of cell N and amino acids formed de novo decreased as the concentration of peptides increased. At high concentrations of peptides (10 and 30 g/liter), the incorporation of ammonia accounted for less than 0.16 of bacterial amino acid N and less than 0.30 of total N. At 1 g/liter, which is more similar to peptide concentrations found in the rumen, 0.68, 0.87, and 0.46 of bacterial amino acid N and 0.83, 0.89, and 0.64 of total N were derived from ammonia by P. bryantii, S. ruminantium, andS. bovis, respectively. Concentration-dependent responses were also obtained with amino acids. No individual amino acid was exhausted in any incubation medium. For cultures of P. bryantii, peptides were incorporated and stimulated growth more effectively than amino acids, while cultures of the other species showed no preference for peptides or amino acids. Apparent growth yields increased by between 8 and 57%, depending on the species, when 1 g of peptides or amino acids per liter was added to the medium. Proline synthesis was greatly decreased when peptides or amino acids were added to the medium, while glutamate and aspartate were enriched to a greater extent than other amino acids under all conditions. Thus, the proportion of bacterial protein formed de novo in noncellulolytic ruminal bacteria varies according to species and the form and identity of the amino acid and in a concentration-dependent manner.


2021 ◽  
Vol 12 (12) ◽  
Author(s):  
Hyeon-Ok Jin ◽  
Sung-Eun Hong ◽  
Ji-Young Kim ◽  
Se-Kyeong Jang ◽  
In-Chul Park

AbstractAmino acid availability is sensed by various signaling molecules, including general control nonderepressible 2 (GCN2) and mechanistic target of rapamycin complex 1 (mTORC1). However, it is unclear how these sensors are associated with cancer cell survival under low amino acid availability. In the present study, we investigated AKT activation in non-small cell lung cancer (NSCLC) cells deprived of each one of 20 amino acids. Among the 20 amino acids, deprivation of glutamine, arginine, methionine, and lysine induced AKT activation. AKT activation was induced by GCN2/ATF4/REDD1 axis-mediated mTORC2 activation under amino acid deprivation. In CRISPR-Cas9-mediated REDD1-knockout cells, AKT activation was not induced by amino acid deprivation, indicating that REDD1 plays a major role in AKT activation under amino acid deprivation. Knockout of REDD1 sensitized cells cultured under glutamine deprivation conditions to radiotherapy. Taken together, GCN2/ATF4/REDD1 axis induced by amino acid deprivation promotes cell survival signal, which might be a potential target for cancer therapy.


2003 ◽  
Vol 16 (2) ◽  
pp. 127-141 ◽  
Author(s):  
Paul J. Moughan

AbstractIt is important to be able to characterise foods and feedstuffs according to their available amino acid contents. This involves being able to determine amino acids chemically and the conduct of bioassays to determine amino acid digestibility and availability. The chemical analysis of amino acids is not straightforward and meticulousness is required to achieve consistent results. In particular and for accuracy, the effect of hydrolysis time needs to be accounted for. Some amino acids (for example, lysine) can undergo chemical modification during the processing and storage of foods, which interferes with amino acid analysis. Furthermore, the modified amino acids may also interfere with the determination of digestibility. A new approach to the determination of available lysine using a modifiedin vivodigestibility assay is discussed. Research is required into other amino acids susceptible to structural damage. There is recent compelling scientific evidence that bacterial activity in the small intestine of animals and man leads to the synthesis and uptake of dietary essential amino acids. This has implications for the accuracy of the ileal-based amino acid digestibility assay and further research is required to determine the extent of this synthesis, the source of nitrogenous material used for the synthesis and the degree of synthesis net of amino acid catabolism. Although there may be potential shortcomings in digestibility assays based on the determination of amino acids remaining undigested at the terminal ileum, there is abundant evidence in simple-stomached animals and growing evidence in human subjects that faecal-based amino acid digestibility coefficients are misleading. Hindgut microbial metabolism significantly alters the undigested dietary amino acid profile. The ileal amino acid digestibility bioassay is expected to be more accurate than its faecal-based counterpart, but correction of the ileal amino acid flow for amino acids of endogenous origin is necessary. Approaches to correcting for the endogenous component are discussed.


1997 ◽  
Vol 272 (4) ◽  
pp. E592-E599 ◽  
Author(s):  
B. B. Poindexter ◽  
C. A. Karn ◽  
J. A. Ahlrichs ◽  
J. Wang ◽  
C. A. Leitch ◽  
...  

To determine how increased amino acid availability alters rates of whole body proteolysis and the irreversible catabolism of the essential amino acids leucine and phenylalanine throughout the neonatal period, leucine and phenylalanine kinetics were measured under basal conditions and in response to intravenous amino acids in two separate groups of healthy, full-term newborns (at 3 days and 3 wk of age). The endogenous rates of appearance of leucine and phenylalanine (reflecting proteolysis) were suppressed equally in both groups and in a dose-dependent fashion (by approximately 10% with 1.2 g x kg(-1) x day(-1) and by approximately 20% with 2.4 g x kg(-1) x day(-1)) in response to intravenous amino acid delivery. Insulin concentrations remained unchanged from basal values during amino acid administration. The irreversible catabolism of leucine and phenylalanine increased in a stepwise fashion in response to intravenous amino acids; again, no differences were observed between the two groups. This study clearly demonstrates that the capacity to acutely increase rates of leucine oxidation and phenylalanine hydroxylation is fully present early in the neonatal period in normal newborns. Furthermore, these data suggest that amino acid availability is a primary regulator of proteolysis in normal newborns throughout the neonatal period.


1998 ◽  
Vol 331 (2) ◽  
pp. 417-422 ◽  
Author(s):  
David C. RISHIKOF ◽  
Ping-Ping KUANG ◽  
Christine POLIKS ◽  
Ronald H. GOLDSTEIN

The steady-state level of α1(I) collagen mRNA is regulated by amino acid availability in human lung fibroblasts. Depletion of amino acids decreases α1(I) collagen mRNA levels and repletion of amino acids induces rapid re-expression of α1(I) mRNA. In these studies, we examined the requirements for individual amino acids on the regulation of α1(I) collagen mRNA. We found that re-expression of α1(I) collagen mRNA was critically dependent on cystine but not on other amino acids. However, the addition of cystine alone did not result in re-expression of α1(I) collagen mRNA. Following amino acid depletion, the addition of cystine with selective amino acids increased α1(I) collagen mRNA levels. The combination of glutamine and cystine increased α1(I) collagen mRNA levels 6.3-fold. Methionine or a branch-chain amino acid (leucine, isoleucine or valine) also acted in combination with cystine to increase α1(I) collagen mRNA expression, whereas other amino acids were not effective. The prolonged absence of cystine lowered steady-state levels of α1(I) collagen mRNA through a mechanism involving decreases in both the rate of gene transcription as assessed by nuclear run-on experiments and mRNA stability as assessed by half-life determination in the presence of actinomycin D. The effect of cystine was not mediated via alterations in the level of glutathione, the major redox buffer in cells, as determined by the addition of buthionine sulphoximine, an inhibitor of γ-glutamylcysteine synthetase. These data suggest that cystine directly affects the regulation of α1(I) collagen mRNA.


Sign in / Sign up

Export Citation Format

Share Document