scholarly journals The Transcriptional Repressor REST Determines the Cell-Specific Expression of the Human MAPK8IP1 Gene Encoding IB1 (JIP-1)

2001 ◽  
Vol 21 (21) ◽  
pp. 7256-7267 ◽  
Author(s):  
Amar Abderrahmani ◽  
Myriam Steinmann ◽  
Valérie Plaisance ◽  
Guy Niederhauser ◽  
Jacques-Antoine Haefliger ◽  
...  

ABSTRACT Islet-brain 1 (IB1) is the human and rat homologue of JIP-1, a scaffold protein interacting with the c-Jun amino-terminal kinase (JNK). IB1 expression is mostly restricted to the endocrine pancreas and to the central nervous system. Herein, we explored the transcriptional mechanism responsible for this preferential islet and neuronal expression of IB1. A 731-bp fragment of the 5′ regulatory region of the human MAPK8IP1 gene was isolated from a human BAC library and cloned upstream of a luciferase reporter gene. This construct drove high transcriptional activity in both insulin-secreting and neuron-like cells but not in unrelated cell lines. Sequence analysis of this promoter region revealed the presence of a neuron-restrictive silencer element (NRSE) known to bind repressor zinc finger protein REST. This factor is not expressed in insulin-secreting and neuron-like cells. By mobility shift assay, we confirmed that REST binds to the NRSE present in the IB1 promoter. Once transiently transfected in β-cell lines, the expression vector encoding REST repressed IB1 transcriptional activity. The introduction of a mutated NRSE in the 5′ regulating region of the IB1 gene abolished the repression activity driven by REST in insulin-secreting β cells and relieved the low transcriptional activity of IB1 observed in unrelated cells. Moreover, transfection in non-β and nonneuronal cell lines of an expression vector encoding REST lacking its transcriptional repression domain relieved IB1 promoter activity. Last, the REST-mediated repression of IB1 could be abolished by trichostatin A, indicating that deacetylase activity is required to allow REST repression. Taken together, these data establish a critical role for REST in the control of the tissue-specific expression of the humanIB1 gene.

Author(s):  
Chen-Long Wang ◽  
Jing-Chi Li ◽  
Ci-Xiang Zhou ◽  
Cheng-Ning Ma ◽  
Di-Fei Wang ◽  
...  

Abstract Purpose Tumor metastasis is the main cause of death from breast cancer patients and cell migration plays a critical role in cancer metastasis. Recent studies have shown long non-coding RNAs (lncRNAs) play an essential role in the initiation and progression of cancer. In the present study, the role of an LncRNA, Rho GTPase Activating Protein 5- Antisense 1 (ARHGAP5-AS1) in breast cancer was investigated. Methods RNA sequencing was performed to find out dysregulated LncRNAs in MDA-MB-231-LM2 cells. Transwell migration assays and F-actin staining were utilized to estimate cell migration ability. RNA pulldown assays and RNA immunoprecipitation were used to prove the interaction between ARHGAP5-AS1 and SMAD7. Western blot and immunofluorescence imaging were used to examine the protein levels. Dual luciferase reporter assays were performed to evaluate the activation of TGF-β signaling. Results We analyzed the RNA-seq data of MDA-MB-231 and its highly metastatic derivative MDA-MB-231-LM2 cell lines (referred to as LM2) and identified a novel lncRNA (NR_027263) named as ARHGAP5-AS1, which expression was significantly downregulated in LM2 cells. Further functional investigation showed ARHGAP5-AS1 could inhibit cell migration via suppression of stress fibers in breast cancer cell lines. Afterwards, SMAD7 was further identified to interact with ARHGAP5-AS1 by its PY motif and thus its ubiquitination and degradation was blocked due to reduced interaction with E3 ligase SMURF1 and SMURF2. Moreover, ARHGAP5-AS1 could inhibit TGF-β signaling pathway due to its inhibitory role on SMAD7. Conclusion ARHGAP5-AS1 inhibits breast cancer cell migration via stabilization of SMAD7 protein and could serve as a novel biomarker and a potential target for breast cancer in the future.


2000 ◽  
Vol 20 (9) ◽  
pp. 3316-3329 ◽  
Author(s):  
Carsten Müller ◽  
Carol Readhead ◽  
Sven Diederichs ◽  
Gregory Idos ◽  
Rong Yang ◽  
...  

ABSTRACT Gene expression in mammalian organisms is regulated at multiple levels, including DNA accessibility for transcription factors and chromatin structure. Methylation of CpG dinucleotides is thought to be involved in imprinting and in the pathogenesis of cancer. However, the relevance of methylation for directing tissue-specific gene expression is highly controversial. The cyclin A1 gene is expressed in very few tissues, with high levels restricted to spermatogenesis and leukemic blasts. Here, we show that methylation of the CpG island of the human cyclin A1 promoter was correlated with nonexpression in cell lines, and the methyl-CpG binding protein MeCP2 suppressed transcription from the methylated cyclin A1 promoter. Repression could be relieved by trichostatin A. Silencing of a cyclin A1 promoter-enhanced green fluorescent protein (EGFP) transgene in stable transfected MG63 osteosarcoma cells was also closely associated with de novo promoter methylation. Cyclin A1 could be strongly induced in nonexpressing cell lines by trichostatin A but not by 5-aza-cytidine. The cyclin A1 promoter-EGFP construct directed tissue-specific expression in male germ cells of transgenic mice. Expression in the testes of these mice was independent of promoter methylation, and even strong promoter methylation did not suppress promoter activity. MeCP2 expression was notably absent in EGFP-expressing cells. Transcription from the transgenic cyclin A1 promoter was repressed in most organs outside the testis, even when the promoter was not methylated. These data show the association of methylation with silencing of the cyclin A1 gene in cancer cell lines. However, appropriate tissue-specific repression of the cyclin A1 promoter occurs independently of CpG methylation.


1996 ◽  
Vol 271 (6) ◽  
pp. G1104-G1113 ◽  
Author(s):  
A. Muraoka ◽  
M. Kaise ◽  
Y. J. Guo ◽  
J. Yamada ◽  
I. Song ◽  
...  

H(+)-K(+)-adenosinetriphosphatase (H(+)-K(+)-ATPase) is the principal enzyme responsible for the process of gastric acid secretion. This enzyme is expressed in a cell-type-specific manner in gastric parietal cells. To explore the mechanisms regulating its expression, we transfected differentiated canine parietal cells in primary culture with H(+)-K(+)-ATPase-luciferase reporter genes and assessed transcriptional activities. Deletional analysis of the 5'-flanking region of this gene demonstrated a remarkable increment in transcriptional activity associated with a segment between bases -54 to -45 (5' GCTCCGCCTC 3') relative to the transcriptional initiation site. Gel shift assays with competition and supershift analysis demonstrated that this segment is specifically bound by the transcription factor Sp1. A point mutation, eliminating Sp1 binding, diminished basal transcriptional activity by 80%, indicating that this Sp1 binding site is important for constitutive transcriptional activity. Although these studies indicate that Sp1 is required to maintain a high concentration of the H(+)-K(+)-ATPase gene in the parietal cell, its cell-type-specific expression must rely on other elements because Sp1 is a ubiquitously expressed transcription factor.


Blood ◽  
2000 ◽  
Vol 95 (11) ◽  
pp. 3578-3584 ◽  
Author(s):  
Haruhiko Asano ◽  
Xi Susan Li ◽  
George Stamatoyannopoulos

Abstract FKLF-2, a novel Krüppel-type zinc finger protein, was cloned from murine yolk sac. The deduced polypeptide sequence of 289 amino acids has 3 contiguous zinc fingers at the near carboxyl-terminal end, an amino-terminal domain characterized by its high content of alanine and proline residues and a carboxyl-terminal domain rich in serine residues. By Northern blot hybridization, the human homologue of FKLF-2 is expressed in the bone marrow and striated muscles and not in 12 other human tissues analyzed. FKLF-2 is constitutively expressed in established cell lines with an erythroid phenotype, but it is inconsistently expressed in cell lines with myeloid or lymphoid phenotypes. The expression of FKLF-2 messenger RNA (mRNA) is up-regulated after induction of mouse erythroleukemia cells. In luciferase assays, FKLF-2 activates predominantly the γ, and to a lesser degree, the ɛ and β globin gene promoters. The activation of γ gene promoter does not depend on the presence of an HS2 enhancer. FKLF-2 activates the γ promoter predominantly by interacting with the γ CACCC box, and to a lesser degree through interaction with the TATA box or its surrounding DNA sequences. FKLF-2 also activated all the other erythroid specific promoters we tested (GATA-1, glycophorin B, ferrochelatase, porphobilinogen deaminase, and 5-aminolevulinate synthase). These results suggest that in addition to globin, FKLF-2 may be involved in activation of transcription of a wide range of genes in the cells of the erythroid lineage.


2002 ◽  
Vol 22 (12) ◽  
pp. 4256-4267 ◽  
Author(s):  
Kazuhiro Tanaka ◽  
Noriyuki Tsumaki ◽  
Christine A. Kozak ◽  
Yoshihiro Matsumoto ◽  
Fumihiko Nakatani ◽  
...  

ABSTRACT Type XI collagen is composed of three chains, α1(XI), α2(XI), and α3(XI), and plays a critical role in the formation of cartilage collagen fibrils and in skeletal morphogenesis. It was previously reported that the −530-bp promoter segment of the α2(XI) collagen gene (Col11a2) was sufficient for cartilage-specific expression and that a 24-bp sequence from this segment was able to switch promoter activity from neural tissues to cartilage in transgenic mice when this sequence was placed in the heterologous neurofilament light gene (NFL) promoter. To identify a protein factor that bound to the 24-bp sequence of the Col11a2 promoter, we screened a mouse limb bud cDNA expression library in the yeast one-hybrid screening system and obtained the cDNA clone NT2. Sequence analysis revealed that NT2 is a zinc finger protein consisting of a Krüppel-associated box (KRAB) and is a homologue of human FPM315, which was previously isolated by random cloning and sequencing. The KRAB domain has been found in a number of zinc finger proteins and implicated as a transcriptional repression domain, although few target genes for KRAB-containing zinc finger proteins has been identified. Here, we demonstrate that NT2 functions as a negative regulator of Col11a2. In situ hybridization analysis of developing mouse cartilage showed that NT2 mRNA is highly expressed by hypertrophic chondrocytes but is minimally expressed by resting and proliferating chondrocytes, in an inverse correlation with the expression patterns of Col11a2. Gel shift assays showed that NT2 bound a specific sequence within the 24-bp site of the Col11a2 promoter. We found that Col11a2 promoter activity was inhibited by transfection of the NT2 expression vector in RSC cells, a chondrosarcoma cell line. The expression vector for mutant NT2 lacking the KRAB domain failed to inhibit Col11a2 promoter activity. These results demonstrate that KRAB-zinc finger protein NT2 inhibits transcription of its physiological target gene, suggesting a novel regulatory mechanism of cartilage-specific expression of Col11a2.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1851-1851
Author(s):  
Ya-Wei Qiang ◽  
Bo Hu ◽  
Yu Chen ◽  
Wei Qiang ◽  
Christoph Heuck ◽  
...  

Abstract Abstract 1851 Background: The proteasome inhibitor Bortezomib (Bz) shows significant activity in Multiple Myeloma (MM) by acting on MM cell directly as well as by augmenting bone formation in vitro and in vivo. Its effect on the bone could be traced to promoting differentiation of mesenchymal stem cells into osteoblast cells by regulating BMP2 and canonical Wnt signaling. However, the molecular mechanism mediating the direct anti-MM activity of Bz remains to be fully understood. Initially the rationale for the use of Bz in MM was inhibition of NF-kB signaling, yet subsequent studies showed that Bz actually induces activation of this pathway. In this study, we examined whether Bz regulates the activity of canonical Wnt signaling pathway in MM and whether the growth-inhibition effect of Bz was associated with activation of this pathway by using multiple MM cell lines including EJM, H929, INA6, KMS28BM, JJN3, L363, OPM1, OPM2, RPMI8226, UTMC, XG2 and XG6 as well as primary plasma cells (PC) from six patients with newly diagnosed MM. Methods/Results: Immunoblotting demonstrated that Bz induces stabilization of b-catenin protein in three MM cell lines (H929, OPM2 and UTMC) in a time- and dose-dependent manner. These changes were not seen when the same cell lysate were immunoblotted for other catenin family members, a-catenin and g-catenin. Increased levels of b-catenin protein response to Bz treatment were observed in other 9 MM cell lines (EJM, INA6, KMS28BM, JJN3, L363, OPM1, RPMI8226, XG2 and XG6) and in the 6 CD138+ sorted bone marrow PC from patients with MM. To determine if Bz regulation of b-catenin level is a specific effect of the inhibition of 26S proteasome subunit we treated the same MM cell lines with another proteasome inhibitor, MG132. Similar results were observed in response to MG132 for all four MM cell lines, suggesting the effect of Bz on b-catenin protein is 26S proteosome inhibitor specific. Increases in b-catenin protein levels in MM cells were not due to increased Ctnnb1/CTNNB (b-catenin) gene transcription as b-catenin mRNA did not change in these cells treated with Bz. These results indicate that proteasome inhibition increases b-catenin is independent of transcriptional upregulation. To determine whether Bz induces the nuclear localization and transcriptional activity of b-catenin, cells were incubated with Bz for 6 hours and then fractionated to separate the nuclear and cytoplasmic fractions. Treatment with Bz resulted an increase in nuclear b-catenin as well as b-catenin in cytoplasm in four cell lines including H929, INA6, OPM1 and MM144. Increase in cytoplasmic and nuclear b-catenin was further confirmed by immunofluorescence with antibodies specific for active form of b-catenin. To determine whether Bz affects b-catenin-mediated transcriptional activity, we used a TCF/LEF luciferase reporter construct cloned in lentiviral vector. OPM2 cells were infected with lentiviral particle containing the TCF reporter or containing empty vector and were then treated with serial concentrations of Bz. The luciferase activity exhibited a dose-dependent response to Bz analogous to the stabilization of b-catenin. Similar results were observed in 7 out of 8 MM cell lines compared with untreated control. Stimulation of TCF transcriptional activity by Bz was independent of modifiers of extracellular Wnt ligands, such as Frizzled receptors, LRP5/6 co-receptors and sFRPs or the activation of intracellular GSK3b. Conclusion: These results indicate that Bz augments activation of canonical Wnt signaling by preventing b-catenin protein from proteosome-mediated degradation in MM cells. Concentrations of Bz for stimulating TCF transcriptional activity are comparable to those being used to induce inhibition of MM proliferation. Experiments modulating cytoplasmic as well as the nuclear players and interactions of the Wnt-pathway are ongoing to determine if Bz mediated activation of b-catenin signaling is responsible for its direct anti-MM effect. Disclosures: Barlogie: Celgene, Genzyme, Novartis, Millennium: Consultancy, Honoraria, Patents & Royalties. Shaughnessy:Myeloma Health, Celgene, Genzyme, Novartis: Consultancy, Employment, Equity Ownership, Honoraria, Patents & Royalties.


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 3583-3583
Author(s):  
Muluken S Belew ◽  
Stefan Rentas ◽  
Laura de Rooij ◽  
Kristin J Hope

Abstract The Musashi-2 (MSI2) RNA binding protein is now recognized as a key regulator of hematopoietic stem cells (HSCs). Its expression is most elevated in the primitive HSC compartment and progressively decreases with differentiation. In mouse models of CML, ectopic expression of MSI2 drives progression from the chronic to the blast crisis state while in the human context its aberrantly high expression correlates with more aggressive CML disease states and is associated with poor prognosis in AML. These studies suggest that the precise molecular regulation of MSI2 gene expression may be among the critical mechanisms underlying balanced HSC self-renewal and differentiation and as a result, the prevention of leukemic transformation/progression. Despite the clear importance of understanding how Msi2 maintains an appropriate stem cell-specific expression level, very little is understood of the transcription factors (TFs) that mediate this. To define those factors that govern MSI2 expression and function specifically in the HSC compartment we undertook a systematic approach to map and define relevant regulatory elements of the MSI2 minimal promoter. We dissected a 3.5 kb region 5' upstream of MSI2's translational start site (TSS) shared between mouse and human and thus having the greatest potential of containing regulatory elements key to a conserved MSI2 stem-cell-specific gene expression program. Progressive 5'-terminal deletions of this region cloned upstream of a luciferase reporter gene and transfected into K562 and 293T model cell lines allowed us to define a minimal conserved promoter region from -588 to -203 bp upstream of the TSS that reports accurately on endogenous MSI2 expression. Coupled with in silico prediction of TF that bind this region, systematic TF binding site mutagenesis and luciferase reporter assays in model cell lines identified USF2 and PLAG1 as TFs whose direct binding to the MSI2 minimal promoter direct reporter activity. Loss and gain of function studies in K562 cells confirm that these factors co-regulate the transactivation of endogenous MSI2. Moreover we show in the most relevant primary human CD34+ hematopoietic cell context that these factors bind the MSI2 minimal promoter. While USF2 is a ubiquitously expressed TF across the hematopoietic hierarchy, the uniquely restricted expression of PLAG1 within only the most primitive of hematopoietic cells suggests that it specifically contributes to the heightened stem cell-specific expression of MSI2. Consistent with its role as a key driver of MSI2 and thus an enforcer of its pro-self-renewal functions, we found that overexpression of PLAG1 in human Lin-CD34+ cord blood cells enhanced MSI2 transcription and increased total Colony Forming Unit (CFU) output and re-plating efficiency of primitive CFU progenitors. PLAG1 overexpression also offered a pro-survival advantage to these cells as evidenced by a more than two-fold reduction in Annexin V positive cells compared to negative controls. We have thus described important transcriptional circuitry that governs stem-cell specific expression of MSI2 while at the same time functionally validated PLAG1 as a novel factor capable of modulating primitive hematopoietic cell self-renewal and survival. Disclosures No relevant conflicts of interest to declare.


2020 ◽  
Author(s):  
Blake R Wilde ◽  
Mohan R Kaadige ◽  
Katrin P Guillen ◽  
Andrew Butterfield ◽  
Bryan E Welm ◽  
...  

Abstract BACKGROUND Protein synthesis is regulated by the availability of amino acids, the engagement of growth factor signaling pathways and ATP levels sufficient to support translation. Crosstalk between these inputs is extensive, yet other regulatory mechanisms remain to be characterized. For example, the translation initiation inhibitor Rocaglamide A (RocA) induces Thioredoxin Interacting Protein (TXNIP). TXNIP is a negative regulator of glucose uptake, thus its induction by RocA links translation to the availability of glucose. MondoA is the principal regulator of glucose-induced transcription and its activity is triggered by the glycolytic intermediate, glucose 6-phosphate (G6P). MondoA responds to G6P generated by cytoplasmic glucose and mitochondrial ATP (mtATP), suggesting a critical role in the cellular response to these energy sources. TXNIP expression is entirely dependent on MondoA, therefore, we investigated how protein synthesis inhibitors impact its transcriptional activity.METHODS We investigated how translation regulates MondoA activity using cell line models and loss-of-function approaches. We examined how protein synthesis inhibitors effect gene expression and metabolism using RNA-sequencing and metabolomics, respectively. The biological impact of RocA was evaluated using cell lines and Patient-Derived xenograft Organoid (PDxO) models. RESULTS We discovered that multiple protein synthesis inhibitors, including RocA, increase TXNIP expression in a manner that depends on MondoA, a functional electron transport chain and mtATP synthesis. Furthermore, RocA increases mtATP and G6P levels and TXNIP induction depends on interactions between the Voltage-Dependent Anion Channel (VDAC) and hexokinase, which generates G6P. RocA treatment impacts the regulation of ~1200 genes and ~250 of those genes are MondoA-dependent. RocA treatment is cytotoxic to Triple Negative Breast Cancer cell lines and shows preferential cytotoxicity against ER- PDxO breast cancer models. Finally, RocA-driven cytotoxicity is partially-dependent on MondoA or TXNIP.CONCLUSIONS Our data suggest that protein synthesis inhibitors rewire metabolism, resulting in an increase in mtATP and G6P, the latter driving MondoA-dependent transcriptional activity. Further, MondoA is a critical component of the cellular transcriptional response to RocA. Our functional assays suggest that RocA or similar translation inhibitors may show efficacy against ER- breast tumors and that the levels of MondoA and TXNIP should be considered when exploring these potential treatment options.


2020 ◽  
Author(s):  
Xicen Zhang ◽  
Mei Ding ◽  
Yi Liu ◽  
Yongping Liu ◽  
Jiaxin Xing ◽  
...  

Abstract Background: In previous studies, we researched the association of the DRD2 gene promoter region SNP loci rs7116768, rs1047479195, rs1799732, rs1799978 and schizophrenia using Sanger sequencing. rs7116768 and rs1799978 were found to be slightly associated with schizophrenia. This study investigated the effects of haplotypes consisted of the four SNPs on protein expression level in vitro and identified the functional sequence in the 5’ regulatory region of DRD2 gene which has a potential link with schizophrenia.Methods: Recombinant plasmids with haplotypes, SNPs and 13 recombinant vectors containing deletion fragments from the DRD2 gene 5' regulatory region were transfected into HEK293 and SK-N-SH cell lines. Relative luciferase activity of the haplotypes, SNPs and different sequences was compared using a dual luciferase reporter assay system.Results: Haplotype H4(G-C-InsC-G) could significantly increase the gene expression in SK-N-SH cell lines. Allele C of rs7116768, allele A of rs1047479195 and allele del C of rs1799732 could up-regulate the gene expression. There were 5~7 functional regions in the promoter region of DRD2 gene that could affect the level of gene expression.Conclusion: We cannot rule out the possibility that different haplotypes may influence DRD2 gene expression in vivo. We observed that allele C of rs7116768, allele A of rs1047479195 and allele del C of rs1799732 could up-regulate gene expression. The truncation results confirmed the existence of functional regions in the promoter region of DRD2 gene that could affect the level of gene expression.


Author(s):  
Bin Deng ◽  
Pu Xu ◽  
Bingyu Zhang ◽  
Qing Luo ◽  
Guanbin Song

Tendon injuries are among the most challenging in orthopedics. During the early tendon repair, new blood vessel formation is necessary. However, excessive angiogenesis also exacerbates scar formation, leading to pain and dysfunction. A significantly worse outcome was associated with higher expression levels of hypoxia-inducible factor-1 alpha (HIF-1α), and its transcriptional targets vascular endothelial growth factor A (VEGFA) and platelet-derived growth factor B (PDGFB), but the underlying molecular mechanisms remain unclear. In this study, lipopolysaccharide (LPS) was used to induce an inflammatory response in tenocytes. LPS increased the tenocytes’ inflammatory factor COX2 expression and activated the HIF-1α/VEGFA/PDGFB pathway. Moreover, the conditioned medium from the tenocytes boosted rat aortic vascular endothelial cell (RAOEC) angiogenesis. Furthermore, Trichostatin A (TSA), an inhibitor of histone deacetylase, was used to treat inflammatory tenocytes. The expression levels of HIF-1α and its transcriptional targets VEGFA and PDGFB decreased, resulting in RAOEC angiogenesis inhibition. Finally, the dual-luciferase reporter gene assay and chromatin immunoprecipitation (ChIP) assay proved that the HIF-1α/PDGFB pathway played a more critical role in tenocyte angiogenesis than the HIF-1α/VEGFA pathway. TSA could alleviate angiogenesis mainly through epigenetic regulation of the HIF-1α/PDGFB pathway. Taken together, TSA might be a promising anti-angiogenesis drug for abnormal angiogenesis, which is induced by tendon injuries.


Sign in / Sign up

Export Citation Format

Share Document