scholarly journals Bacteriophage: A Useful Tool for Studying Gut Bacteria Function of Housefly Larvae, Musca domestica

Author(s):  
Xinyu Zhang ◽  
Shumin Wang ◽  
Ting Li ◽  
Qian Zhang ◽  
Ruiling Zhang ◽  
...  

The well-balanced gut microbiota ensures appropriate development of the host insect, such as mosquitoes, cockroaches, and flies. Various intestinal symbiotic bacteria have different influences on the host gut community structure and thus exert different effects on host health.

2020 ◽  
Vol 7 (5) ◽  
pp. 192100 ◽  
Author(s):  
Yuqi Wu ◽  
Yufei Zheng ◽  
Yanan Chen ◽  
Gongwen Chen ◽  
Huoqing Zheng ◽  
...  

Gut microbial communities play vital roles in the modulation of many insects' immunity, including Apis mellifera . However, little is known about the interaction of Apis cerana gut bacteria and A. cerana immune system. Here in this study, we conducted a comparison between germ-free gut microbiota deficient (GD) workers and conventional gut community (CV) workers, to reveal the possible impact of gut microbiota on the expression of A. cerana antimicrobial peptides and immune regulate pathways. We also test whether A. cerana gut microbiota can strengthen host resistance to Nosema ceranae . We find that the expression of apidaecin , abaecin and hymenoptaecin were significantly upregulated with the presence of gut bacteria, and JNK pathway was activated; in the meanwhile, the existence of gut bacteria inhibited the proliferation of Nosema ceranae . These demonstrated the essential role of A. cerana gut microbiota to host health and provided critical insight into the honeybee host–microbiome interaction.


2019 ◽  
Vol 42 ◽  
Author(s):  
Kevin B. Clark

Abstract Some neurotropic enteroviruses hijack Trojan horse/raft commensal gut bacteria to render devastating biomimicking cryptic attacks on human/animal hosts. Such virus-microbe interactions manipulate hosts’ gut-brain axes with accompanying infection-cycle-optimizing central nervous system (CNS) disturbances, including severe neurodevelopmental, neuromotor, and neuropsychiatric conditions. Co-opted bacteria thus indirectly influence host health, development, behavior, and mind as possible “fair-weather-friend” symbionts, switching from commensal to context-dependent pathogen-like strategies benefiting gut-bacteria fitness.


Animals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1938
Author(s):  
Han Aricha ◽  
Huasai Simujide ◽  
Chunjie Wang ◽  
Jian Zhang ◽  
Wenting Lv ◽  
...  

Mongolian cattle from China have strong adaptability and disease resistance. We aimed to compare the gut microbiota community structure and diversity in grazing Mongolian cattle from different regions in Inner Mongolia and to elucidate the influence of geographical factors on the intestinal microbial community structure. We used high throughput 16S rRNA sequencing to analyze the fecal microbial community and diversity in samples from 60 grazing Mongolian cattle from Hulunbuir Grassland, Xilingol Grassland, and Alxa Desert. A total of 2,720,545 high-quality reads and sequences that were 1,117,505,301 bp long were obtained. Alpha diversity among the three groups showed that the gut microbial diversity in Mongolian cattle in the grasslands was significantly higher than that in the desert. The dominant phyla were Firmicutes and Bacteroidetes, whereas Verrucomicrobia presented the highest abundance in the gut of cattle in the Alxa Desert. The gut bacterial communities in cattle from the grasslands versus the Alxa Desert were distinctive, and those from the grasslands were closely clustered. Community composition analysis revealed significant differences in species diversity and richness. Overall, the composition of the gut microbiota in Mongolian cattle is affected by geographical factors. Gut microbiota may play important roles in the geographical adaptations of Mongolian cattle.


Nutrients ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 2029
Author(s):  
Kouya Hattori ◽  
Masahiro Akiyama ◽  
Natsumi Seki ◽  
Kyosuke Yakabe ◽  
Koji Hase ◽  
...  

While poorly-absorbed sugar alcohols such as sorbitol are widely used as sweeteners, they may induce diarrhea in some individuals. However, the factors which determine an individual’s susceptibility to sugar alcohol-induced diarrhea remain unknown. Here, we show that specific gut bacteria are involved in the suppression of sorbitol-induced diarrhea. Based on 16S rDNA analysis, the abundance of Enterobacteriaceae bacteria increased in response to sorbitol consumption. We found that Escherichia coli of the family Enterobacteriaceae degraded sorbitol and suppressed sorbitol-induced diarrhea. Finally, we showed that the metabolism of sorbitol by the E. coli sugar phosphotransferase system helped suppress sorbitol-induced diarrhea. Therefore, gut microbiota prevented sugar alcohol-induced diarrhea by degrading sorbitol in the gut. The identification of the gut bacteria which respond to and degrade sugar alcohols in the intestine has implications for microbiome science, processed food science, and public health.


2021 ◽  
pp. 118558
Author(s):  
Jingjing Liang ◽  
Meina Zhang ◽  
Xingnan Wang ◽  
Yichen Ren ◽  
Tianli Yue ◽  
...  

2021 ◽  
Vol 20 (1) ◽  
Author(s):  
A. L. Cunningham ◽  
J. W. Stephens ◽  
D. A. Harris

AbstractObesity and its complications constitute a substantial burden. Considerable published research describes the novel relationships between obesity and gut microbiota communities. It is becoming evident that microbiota behave in a pivotal role in their ability to influence homeostatic mechanisms either to the benefit or detriment of host health, the extent of which is not fully understood. A greater understanding of the contribution of gut microbiota towards host pathophysiology is revealing new therapeutic avenues to tackle the global obesity epidemic. This review focuses on causal relationships and associations with obesity, proposed central mechanisms encouraging the development of obesity and promising prospective methods for microbiota manipulation.


Gerontology ◽  
2018 ◽  
Vol 64 (6) ◽  
pp. 513-520 ◽  
Author(s):  
Sangkyu Kim ◽  
S. Michal Jazwinski

The gut microbiota shows a wide inter-individual variation, but its within-individual variation is relatively stable over time. A functional core microbiome, provided by abundant bacterial taxa, seems to be common to various human hosts regardless of their gender, geographic location, and age. With advancing chronological age, the gut microbiota becomes more diverse and variable. However, when measures of biological age are used with adjustment for chronological age, overall richness decreases, while a certain group of bacteria associated with frailty increases. This highlights the importance of considering biological or functional measures of aging. Studies using model organisms indicate that age-related gut dysbiosis may contribute to unhealthy aging and reduced longevity. The gut microbiome depends on the host nutrient signaling pathways for its beneficial effects on host health and lifespan, and gut dysbiosis disrupting the interdependence may diminish the beneficial effects or even have reverse effects. Gut dysbiosis can trigger the innate immune response and chronic low-grade inflammation, leading to many age-related degenerative pathologies and unhealthy aging. The gut microbiota communicates with the host through various biomolecules, nutrient signaling-independent pathways, and epigenetic mechanisms. Disturbance of these communications by age-related gut dysbiosis can affect the host health and lifespan. This may explain the impact of the gut microbiome on health and aging.


2021 ◽  
Author(s):  
Qi Yan Ang ◽  
Diana L. Alba ◽  
Vaibhav Upadhyay ◽  
Jordan E. Bisanz ◽  
Jingwei Cai ◽  
...  

Abstract Background: The human gut microbiota exhibits marked variation around the world, which has been attributed to dietary intake and other environmental factors. However, the degree to which ethnicity-associated differences in gut microbial community structure and function are maintained following immigration or in the context of metabolic disease is poorly understood.Results: We conducted a multi-omic study of 46 lean and obese East Asian and White participants living in the San Francisco Bay Area. 16S rRNA gene sequencing revealed significant differences between ethnic groups in bacterial richness and community structure. White individuals were enriched for the mucin-degrading Akkermansia muciniphila. East Asian participants had increased levels of multiple bacterial phyla, fermentative pathways detected by metagenomics, and the short-chain fatty acid end products acetate, propionate, and isobutyrate. Differences in the gut microbiota between the East Asian and White groups could not be explained by reported dietary intake, were more pronounced in lean individuals, and were associated with current geographical location. Microbiome transplantations into germ-free mice confirmed that the differences in the gut microbiota of the East Asian and White individuals we analyzed are independent of diet and that they differentially impact host body weight and adiposity in genetically identical mouse recipients.Conclusions: The reported findings emphasize the utility of studying diverse ethnic groups within a defined geographical location and provide a starting point for dissecting the mechanisms contributing to the complex interactions between the gut microbiome and ethnicity-associated lifestyle, demographic, metabolic, and genetic factors.


2021 ◽  
Author(s):  
Xiangnan Xu ◽  
Michal Lubomski ◽  
Andrew J Holmes ◽  
Carolyn M Sue ◽  
Ryan L Davis ◽  
...  

The microbiome plays a fundamental role in human health and diet is one of the strongest modulators of the gut microbiome. However, interactions between microbiota and host health are complex and diverse. Understanding the interplay between diet, the microbiome and health state could enable the design of personalized intervention strategies and improve the health and wellbeing of affected individuals. A common approach to this is to divide the study population into smaller cohorts based on dietary preferences in the hope of identifying specific microbial signatures. However, classification of patients based solely on diet is unlikely to reflect the microbiome-host health relationship or the taxonomic microbiome makeup. To this end, we present a novel approach, the Nutrition-Ecotype Mixture of Experts (NEMoE) model, for establishing associations between gut microbiota and health state that accounts for diet-specific cohort variability using a regularized mixture of experts model framework with an integrated parameter sharing strategy to ensure data driven diet-cohort identification consistency across taxonomic levels. The success of our approach was demonstrated through a series of simulation studies, in which NEMoE showed robustness with regard to parameter selection and varying degrees of data heterogeneity. Further application to real-world microbiome data from a Parkinson's disease cohort revealed that NEMoE is capable of not only improving predictive performance for Parkinson's Disease but also for identifying diet-specific microbiome markers of disease. Our results indicate that NEMoE can be used to uncover diet-specific relationships between nutritional-ecotype and patient health and to contextualize precision nutrition for different diseases.


Sign in / Sign up

Export Citation Format

Share Document