Assessing the flood control effect of the existing and projected reservoirs in the middle amur basin by physically—based hydrological models

2015 ◽  
Vol 42 (5) ◽  
pp. 580-593 ◽  
Author(s):  
Yu. G. Motovilov ◽  
V. I. Danilov-Danilyan ◽  
E. V. Dod ◽  
A. S. Kalugin
Author(s):  
D. P. Solomatine

Traditionally, management and control of water resources is based on behavior-driven or physically based models based on equations describing the behavior of water bodies. Since recently models built on the basis of large amounts of collected data are gaining popularity. This modeling approach we will call data-driven modeling; it borrows methods from various areas related to computational intelligence—machine learning, data mining, soft computing, etc. The chapter gives an overview of successful applications of several data-driven techniques in the problems of water resources management and control. The list of such applications includes: using decision trees in classifying flood conditions and water levels in the coastal zone depending on the hydrometeorological data, using artificial neural networks (ANN) and fuzzy rule-based systems for building controllers for real-time control of water resources, using ANNs and M5 model trees in flood control, using chaos theory in predicting water levels for ship guidance, etc. Conclusions are drawn on the applicability of the mentioned methods and the future role of computational intelligence in modeling and control of water resources.


2016 ◽  
Vol 20 (2) ◽  
pp. 903-920 ◽  
Author(s):  
W. Qi ◽  
C. Zhang ◽  
G. Fu ◽  
C. Sweetapple ◽  
H. Zhou

Abstract. The applicability of six fine-resolution precipitation products, including precipitation radar, infrared, microwave and gauge-based products, using different precipitation computation recipes, is evaluated using statistical and hydrological methods in northeastern China. In addition, a framework quantifying uncertainty contributions of precipitation products, hydrological models, and their interactions to uncertainties in ensemble discharges is proposed. The investigated precipitation products are Tropical Rainfall Measuring Mission (TRMM) products (TRMM3B42 and TRMM3B42RT), Global Land Data Assimilation System (GLDAS)/Noah, Asian Precipitation – Highly-Resolved Observational Data Integration Towards Evaluation of Water Resources (APHRODITE), Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN), and a Global Satellite Mapping of Precipitation (GSMAP-MVK+) product. Two hydrological models of different complexities, i.e. a water and energy budget-based distributed hydrological model and a physically based semi-distributed hydrological model, are employed to investigate the influence of hydrological models on simulated discharges. Results show APHRODITE has high accuracy at a monthly scale compared with other products, and GSMAP-MVK+ shows huge advantage and is better than TRMM3B42 in relative bias (RB), Nash–Sutcliffe coefficient of efficiency (NSE), root mean square error (RMSE), correlation coefficient (CC), false alarm ratio, and critical success index. These findings could be very useful for validation, refinement, and future development of satellite-based products (e.g. NASA Global Precipitation Measurement). Although large uncertainty exists in heavy precipitation, hydrological models contribute most of the uncertainty in extreme discharges. Interactions between precipitation products and hydrological models can have the similar magnitude of contribution to discharge uncertainty as the hydrological models. A better precipitation product does not guarantee a better discharge simulation because of interactions. It is also found that a good discharge simulation depends on a good coalition of a hydrological model and a precipitation product, suggesting that, although the satellite-based precipitation products are not as accurate as the gauge-based products, they could have better performance in discharge simulations when appropriately combined with hydrological models. This information is revealed for the first time and very beneficial for precipitation product applications.


2005 ◽  
Vol 49 ◽  
pp. 457-462 ◽  
Author(s):  
Taichi TEBAKARI ◽  
Kazuhiko FUKAMI ◽  
Chanchai SUVANPIMOL ◽  
Mamoru MIYAMOTO ◽  
Tadashi YAMADA

2008 ◽  
Vol 12 (3) ◽  
pp. 751-767 ◽  
Author(s):  
T. Vischel ◽  
G. G. S. Pegram ◽  
S. Sinclair ◽  
W. Wagner ◽  
A. Bartsch

Abstract. The paper compares two independent approaches to estimate soil moisture at the regional scale over a 4625 km2 catchment (Liebenbergsvlei, South Africa). The first estimate is derived from a physically-based hydrological model (TOPKAPI). The second estimate is derived from the scatterometer on board the European Remote Sensing satellite (ERS). Results show a good correspondence between the modelled and remotely sensed soil moisture, particularly with respect to the soil moisture dynamic, illustrated over two selected seasons of 8 months, yielding regression R2 coefficients lying between 0.68 and 0.92. Such a close similarity between these two different, independent approaches is very promising for (i) remote sensing in general (ii) the use of hydrological models to back-calculate and disaggregate the satellite soil moisture estimate and (iii) for hydrological models to assimilate the remotely sensed soil moisture.


2015 ◽  
Vol 10 (3) ◽  
pp. 467-474 ◽  
Author(s):  
Hideo Oshikawa ◽  
◽  
Yuka Mito ◽  
Toshimitsu Komatsu ◽  
◽  
...  

The new Cascade concept of flood control is demonstrated in laboratory experiments in which upstream dams in a series of dams constructed along a river overflow from emergency spillways while the final downstream dam is required only to use its normal spillway and never do its emergency spillway. Multiple small dry dams lacking a slide gate in a normal spillway should be constructed in a series rather than as a single large dam to prevent flood disasters and to preserve the natural environment. Dry dams for flood control have recently been reviewed, planned, and built at sites in Japan. In this paper, we compare the Cascade method to conventional flood control in laboratory experiments conducted based on the condition that dams all have the same reservoir capacity. Results have shown that the Cascade method using multiple dry dams was considerably more effective than conventional flood control. Furthermore, the additional flood control effect of a dry dam equipped with closable and openable gate in its regular spillway was experimentally confirmed although there is no such kind of the gate on an ordinary dry dam. This new dry dam should be constructed in the river’s upper reaches away from the existing downstream storage dam needing still more its capacity for water utilization, thus ensuring the amount of water available by closing the regular spillway after the dry dam is filled to capacity. The flood control capacity of dams including the new dry dam is stronger than that of an ordinary storage dam thanks to the dry dam’s storage function.


2016 ◽  
Author(s):  
Hubert H. G. Savenije ◽  
Markus Hrachowitz

Abstract. Catchment-scale hydrological models that are generally called "physically-based" unfortunately only have a partial view of the physical processes at play in hydrology. Although the coupled partial differential equations in these models generally reflect the water balance equations and the flow descriptors at laboratory scale, they miss essential characteristics of what determines the functioning of catchments. The most important active agent in catchments is the ecosystem (and sometimes people). What these agents do is to manipulate the flow domain in a way that it supports the essential functions of survival and productivity: infiltration of water, retention of moisture, mobilization and retention of nutrients, and drainage. Ecosystems do this in the most efficient way, establishing a continuous, ever-evolving feedback loop with the landscape and climatic drivers. In brief, our hydrological system is alive and has a strong capacity to adjust itself to prevailing and changing environmental conditions. Although most physically based models take Newtonian theory at heart, as best they can, what they generally miss is Darwinian theory on how an ecosystem evolves and adjusts its environment to maintain crucial hydrological functions. If this active agent is not reflected in our models, then they miss essential physics. Through a Darwinian approach, we can determine the root zone storage capacity of ecosystems, as a crucial component of hydrological models, determining the partitioning of fluxes and the conservation of moisture to bridge periods of drought (Gao et al., 2014a). Another crucial element of physical systems is the evolution of drainage patterns, both on and below the surface. On the surface, such patterns facilitate infiltration or surface drainage with minimal erosion; in the unsaturated zone, patterns facilitate efficient replenishment of moisture deficits and preferential drainage when there is excess moisture; in the groundwater, patterns facilitate the efficient and gradual drainage of groundwater, resulting in linear reservoir recession. Models that do not account for these patterns are not physical. The parameters in the equations may be adjusted to compensate for the lack of patterns, but this involves scale-dependent calibration. In contrast to what is widely believed, relatively simple conceptual models can accommodate these physical processes very efficiently. Of course the parameters of catchment-scale conceptual models, even if they represent physical parameters, such a time scales, thresholds and reservoir sizes, require calibration or estimation on the basis of observations. Fortunately, we see the emergence of new observation systems from space that become more and more accurate and detailed as we go along. Recent products estimating precipitation and evaporation from space have shown to allow the estimation of the root zone storage capacity of ecosystems globally (Lan-Erlandsson et al., 2016), DEMs allow the identification of heterogeneity in the landscape, providing information on the heterogeneity of dominant runoff generating mechanisms (Gharari et al., 2011, Gao et al., 2014b), and gravity observations from space can be used to estimate sub-surface storage fluctuation and groundwater recession (Winsemius et al., 2009). As a result, it will become more and more practical to calibrate well-structured conceptual models, even in poorly gauged catchments. These insights and developments will contribute to the revaluation of conceptual models as physics-based representations of hydrological systems.


2016 ◽  
Author(s):  
Wenchao Sun ◽  
Yuanyuan Wang ◽  
Xingqi Cui ◽  
Jingshan Yu ◽  
Depeng Zuo ◽  
...  

Abstract. Physically-based distributed hydrological models are widely used for hydrological simulations in various environments. However, as with conceptual models, they are limited in data-sparse basin by the lack of streamflow data for calibration. Short periods of observational data (less than 1 year) may be obtained from the fragmentary historical records of past-existed gauging stations or from temporary gauging during field surveys, which might be of values for model calibration. This study explored how the use of limited continuous daily streamflow data might support the application of a physically-based distributed model in data-sparse basins. The influence of the length of observation period on the calibration of the widely applied Soil and Water Assessment Tool model was evaluated in two Chinese basins with differing climatic and geophysical characteristics. The evaluations were conducted by comparing calibrations based on short periods of data with calibrations based on data from a 3-year period, which were treated as benchmark calibrations for the two basins. To ensure the differences in the model simulations solely come from differences in the calibration data, the Generalized Likelihood Uncertainty Analysis scheme was employed for the automatic calibration and uncertainty analysis. In both basins, contrary to the common understanding of the need for observations over a period of several years, data records with lengths of less than 1 year were shown to calibrate the model effectively, i.e. performances similar to the benchmark calibrations were achieved. The model of wet Jinjiang Basin could be effectively calibrated using a shorter data record (1 month), compared with the arid Heihe Basin (6 months). Even though the two basins are very different, the results demonstrated that data from the wet season and wetter years performed better that data from the dry season and drier year. The results of this study demonstrated that short periods of observations could be a promising solution to the problem of calibration of physically-based distributed hydrological models in data-sparse basins and further researches similar to this study are required to gain more general understandings about the optimum number of observations needed for calibration when such model are applied to real data-sparse basins.


2007 ◽  
Vol 4 (6) ◽  
pp. 4325-4360 ◽  
Author(s):  
A. H. te Linde ◽  
J. C. J. H. Aerts ◽  
R. T. W. L. Hurkmans ◽  
M. Eberle

Abstract. Due to the growing wish and necessity to simulate the possible effects of climate change on the discharge regime on large rivers such as the Rhine in Europe, there is a need for well performing hydrological models that can be applied in climate change scenario studies. There exists large variety in available models and there is an ongoing debate in research on rainfall-runoff modelling on whether or not physically based distributed models better represent observed discharges than conceptual lumped model approaches do. In this paper, the hydrological models HBV and VIC were compared for the Rhine basin by testing their performance in simulating discharge. Overall, the semi-distributed conceptual HBV model performed much better than the distributed physically based VIC model (E=0.62, r2=0.65 vs. E=0.31, r2=0.54 at Lobith). It is argued here that even for a well-documented river basin such as the Rhine, more complex modelling does not automatically lead to better results. Moreover, it is concluded that meteorological forcing data has a considerable influence on model performance, irrespectively to the type of model structure and the need for ground-based meteorological measurements is emphasized.


2010 ◽  
Vol 27 ◽  
pp. 121-129 ◽  
Author(s):  
W. Rieger ◽  
F. Winter ◽  
M. Disse

Abstract. Distributed flood control measures such as land-use changes or differing soil tillage practices which affect the runoff generation process, are hard to simulate physically based due to a high degree of uncertainty with regard to soil parameterisation. In this study the physically based rainfall runoff model WaSiM-ETH (Version 8.4.2) was used with a multi-layered vegetation and soil parameterisation. The modelling area was the meso-scaled and rurally characterised Windach catchment. In addition, soil measurement datasets were compared to demonstrate the uncertainties in soil parameterisation of physically based models. The datasets were gained from the hillslope scale at the Scheyern research farm with similar soil conditions to the Windach catchment. While parameterising and calibrating the model, seven different pedotransfer functions were used with strong influence on the simulated hydrographs. The differing bulk densities of soils depending on land-use and soil tillage must be taken into consideration due to their high impact on modelling results, and they also offer a comprehensive way to model distributed flood control measures. These measures have noticeable effects on flood events under HQ10, especially if the land-use type which is affected by the distributed flood control measure is the dominating land-use form in the catchment area. To account for the variability of soils in the investigation area of Scheyern, different approaches were applied to estimate soil hydraulic properties and saturated hydraulic conductivity, and were compared to field measurements.


Sign in / Sign up

Export Citation Format

Share Document