Effect of substrate material on the structure of carbon films obtained by plasmachemical deposition

2006 ◽  
Vol 32 (9) ◽  
pp. 735-737
Author(s):  
A. V. Tyurnina ◽  
A. A. Zolotukhin ◽  
A. N. Obraztsov
MRS Bulletin ◽  
1997 ◽  
Vol 22 (9) ◽  
pp. 22-26 ◽  
Author(s):  
Stephan Neuville ◽  
Allan Matthews

Since the first reports by Aisenberg and Chabot in 1971 indicating the possibility of producing hard amorphous (so-called diamondlike) carbon (DLC) films, many experimental and theoretical research results have been published outlining the properties and film growth mechanisms of these films deposited by a variety of techniques. Polycrystalline and even quasimonocrystalline diamond thin films have also been produced, thus providing a wide range of wear and corrosion properties. The difference between these materials and graphite led to a prediction of rapid market growth for hard carbon. However this has not materialized. A large number of carbonbased films have been produced with differences in hardness, elasticity, friction coefficient, optical and electronic bandgap, electrical and thermal conductivity, and thermal stability. In addition these materials can show very different practical adhesion properties, which depend also on the substrate material and composition. Cost, deposition rate and temperature, geometry, and size of the coating chamber are additional variables. As a result, many of these materials can only be used for a limited range of applications. It is now possible to better understand the suitability of various coatings and the causes of the early failures that occurred through unsuitable material choices. This improved understanding should allow improvements in the performance and reliability of hard carbon films and perhaps trigger the kind of market growth that was originally foreseen but failed to materialize.


Author(s):  
D. C. Joy ◽  
E. G. Spencer ◽  
P. H. Schmidt ◽  
F. J. Sansalone

Polycrystalline carbon films deposited by an ion source were first studied by Aisenberg and Chabot. Because of the problems they encountered in characterizing these films we have examined similar films made in an apparatus of the type shown in Fig. 1. Samples were deposited on to substrates of NaCl, KC1 or silicon in thicknesses up to 2 μm. Prior to examination in the TEM, the films were dissolved from their substrate material and mounted on grids. The films were highly insulating (∼lO12 ohm cm), optically clear and totally resistant to attack by all common solvents. From ellipsometric measurements the index of refraction was found to be ∼2. Ion backscattering and Auger studies showed the samples to be pure carbon except for the presence of a few percent of the carrier gas (argon, krypton, etc.).Figure 2 shows a micrograph typical of such a film. Crystallites varying in size up to a maximum of a few microns are found randomly distributed over the sample. In general the morphology of the crystals is typical of a cubic symmetry, with a predominance of 90° edges. As the film thickness increases there is a tendency for existing crystals to act as substrates for new crystals.


1989 ◽  
Vol 152 ◽  
Author(s):  
Richard L. C. Wu

ABSTRACTDiamond-like carbon (DLC) coatings have been deposited on several infrared transmitting substrates utilizing the ion beam deposition technique. Optimum deposition parameters have been established as a function of source gas composition, source pressure, ion-impact energy, substrate material and cleaning substrate procedures. Extensive characterization of the DLC films was also performed. Rutherford backscattering and proton recoil techniques were used to analyze carbon and hydrogen content and impurities. These films contain 70% atomic carbon and 30% atomic hydrogen. Transmission electron microscopy was used to analyze the crystallinity, void structure and surface microstructure, which were found to be amorphous and dense. Optical properties, such as refractive index and extinction coefficient, were measured using transmission/reflection spectroscopy, ellipsometry and laser calorimetry. Environmental testing was performed using various acids and solvents. The thermal stability and moisture penetration on these DLC films were extensively investigated. The effect of high ion energy radiation on DLC films was studied. Details of the preparation method and characterization of DLC films are presented.


Author(s):  
M. A. Listvan ◽  
R. P. Andres

Knowledge of the function and structure of small metal clusters is one goal of research in catalysis. One important experimental parameter is cluster size. Ideally, one would like to produce metal clusters of regulated size in order to characterize size-dependent cluster properties.A source has been developed which is capable of producing microscopic metal clusters of controllable size (in the range 5-500 atoms) This source, the Multiple Expansion Cluster Source, with a Free Jet Deceleration Filter (MECS/FJDF) operates as follows. The bulk metal is heated in an oven to give controlled concentrations of monomer and dimer which were expanded sonically. These metal species were quenched and condensed in He and filtered to produce areosol particles of a controlled size as verified by mass spectrometer measurements. The clusters were caught on pre-mounted, clean carbon films. The grids were then transferred in air for microscopic examination. MECS/FJDF was used to produce two different sizes of silver clusters for this study: nominally Ag6 and Ag50.


Author(s):  
L. D. Jackel

Most production electron beam lithography systems can pattern minimum features a few tenths of a micron across. Linewidth in these systems is usually limited by the quality of the exposing beam and by electron scattering in the resist and substrate. By using a smaller spot along with exposure techniques that minimize scattering and its effects, laboratory e-beam lithography systems can now make features hundredths of a micron wide on standard substrate material. This talk will outline sane of these high- resolution e-beam lithography techniques.We first consider parameters of the exposure process that limit resolution in organic resists. For concreteness suppose that we have a “positive” resist in which exposing electrons break bonds in the resist molecules thus increasing the exposed resist's solubility in a developer. Ihe attainable resolution is obviously limited by the overall width of the exposing beam, but the spatial distribution of the beam intensity, the beam “profile” , also contributes to the resolution. Depending on the local electron dose, more or less resist bonds are broken resulting in slower or faster dissolution in the developer.


Author(s):  
S.B. Andrews ◽  
R.D. Leapman ◽  
P.E. Gallant ◽  
T.S. Reese

As part of a study on protein interactions involved in microtubule (MT)-based transport, we used the VG HB501 field-emission STEM to obtain low-dose dark-field mass maps of isolated, taxol-stabilized MTs and correlated these micrographs with detailed stereo images from replicas of the same MTs. This approach promises to be useful for determining how protein motors interact with MTs. MTs prepared from bovine and squid brain tubulin were purified and free from microtubule-associated proteins (MAPs). These MTs (0.1-1 mg/ml tubulin) were adsorbed to 3-nm evaporated carbon films supported over Formvar nets on 600-m copper grids. Following adsorption, the grids were washed twice in buffer and then in either distilled water or in isotonic or hypotonic ammonium acetate, blotted, and plunge-frozen in ethane/propane cryogen (ca. -185 C). After cryotransfer into the STEM, specimens were freeze-dried and recooled to ca.-160 C for low-dose (<3000 e/nm2) dark-field mapping. The molecular weights per unit length of MT were determined relative to tobacco mosaic virus standards from elastic scattering intensities. Parallel grids were freeze-dried and rotary shadowed with Pt/C at 14°.


Author(s):  
A. C. Faberge

Benzylamine tartrate (m.p. 63°C) seems to be a better and more convenient substrate for making carbon films than any of those previously proposed. Using it in the manner described, it is easy consistently to make batches of specimen grids as open as 200 mesh with no broken squares, and without individual handling of the grids. Benzylamine tartrate (hereafter called B.T.) is a viscous liquid when molten, which sets to a glass. Unlike polymeric substrates it does not swell before dissolving; such swelling of the substrate seems to be a principal cause of breakage of carbon film. Mass spectroscopic examination indicates a vapor pressure less than 10−9 Torr at room temperature.


Author(s):  
Kenneth H. Downing ◽  
Benjamin M. Siegel

Under the “weak phase object” approximation, the component of the electron wave scattered by an object is phase shifted by π/2 with respect to the unscattered component. This phase shift has been confirmed for thin carbon films by many experiments dealing with image contrast and the contrast transfer theory. There is also an additional phase shift which is a function of the atomic number of the scattering atom. This shift is negligible for light atoms such as carbon, but becomes significant for heavy atoms as used for stains for biological specimens. The light elements are imaged as phase objects, while those atoms scattering with a larger phase shift may be imaged as amplitude objects. There is a great deal of interest in determining the complete object wave, i.e., both the phase and amplitude components of the electron wave leaving the object.


Author(s):  
E. Knapek ◽  
H. Formanek ◽  
G. Lefranc ◽  
I. Dietrich

A few years ago results on cryoprotection of L-valine were reported, where the values of the critical fluence De i.e, the electron exposure which decreases the intensity of the diffraction reflections by a factor e, amounted to the order of 2000 + 1000 e/nm2. In the meantime a discrepancy arose, since several groups published De values between 100 e/nm2 and 1200 e/nm2 /1 - 4/. This disagreement and particularly the wide spread of the results induced us to investigate more thoroughly the behaviour of organic crystals at very low temperatures during electron irradiation.For this purpose large L-valine crystals with homogenuous thickness were deposited on holey carbon films, thin carbon films or Au-coated holey carbon films. These specimens were cooled down to nearly liquid helium temperature in an electron microscope with a superconducting lens system and irradiated with 200 keU-electrons. The progress of radiation damage under different preparation conditions has been observed with series of electron diffraction patterns and direct images of extinction contours.


Sign in / Sign up

Export Citation Format

Share Document