scholarly journals Identifying barriers and facilitators to implementation of community-based tuberculosis active case finding with mobile X-ray units in Lima, Peru: a RE-AIM evaluation

BMJ Open ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. e050314
Author(s):  
Courtney M Yuen ◽  
Daniela Puma ◽  
Ana Karina Millones ◽  
Jerome T Galea ◽  
Christine Tzelios ◽  
...  

ObjectivesIdentify barriers and facilitators to integrating community tuberculosis screening with mobile X-ray units into a health system.MethodsReach, effectiveness, adoption, implementation and maintenance evaluation.Setting3-district region of Lima, Peru.Participants63 899 people attended the mobile units from 7 February 2019 to 6 February 2020.InterventionsParticipants were screened by chest radiography, which was scored for abnormality by computer-aided detection. People with abnormal X-rays were evaluated clinically and by GeneXpert MTB/RIF (Xpert) sputum testing. People diagnosed with tuberculosis at the mobile unit were accompanied to health facilities for treatment initiation.Primary and secondary outcome measuresReach was defined as the percentage of the population of the three-district region that attended the mobile units. Effectiveness was defined as the change in tuberculosis case notifications over a historical baseline. Key implementation fidelity indicators were the percentages of people who had chest radiography performed, were evaluated clinically, had sputum samples collected, had valid Xpert results and initiated treatment.ResultsThe intervention reached 6% of the target population and was associated with an 11% (95% CI 6 to 16) increase in quarterly case notifications, adjusting for the increasing trend in notifications over the previous 3 years. Implementation indicators for screening, sputum collection and Xpert testing procedures all exceeded 85%. Only 82% of people diagnosed with tuberculosis at the mobile units received treatment; people with negative or trace Xpert results were less likely to receive treatment. Suboptimal treatment initiation was driven by health facility doctors’ lack of familiarity with Xpert and lack of confidence in diagnoses made at the mobile unit.ConclusionMobile X-ray units were a feasible and effective strategy to extend tuberculosis diagnostic services into communities and improve early case detection. Effective deployment however requires advance coordination among stakeholders and targeted provider training to ensure that people diagnosed with tuberculosis by new modalities receive prompt treatment.

2020 ◽  
Vol 24 (7) ◽  
pp. 665-673 ◽  
Author(s):  
F. Madhani ◽  
R. A. Maniar ◽  
A. Burfat ◽  
M. Ahmed ◽  
S. Farooq ◽  
...  

BACKGROUND: Systematic screening for TB using automated chest radiography (ACR) with computer-aided detection software (CAD4TB) has been implemented at scale in Karachi, Pakistan. Despite evidence supporting the use of ACR as a pre-screen prior to Xpert® MTB/RIF diagnostic testing in presumptive TB patients, there has been no data published on its use in mass screening in real-world settings.METHOD: Screening was undertaken using mobile digital X-ray vehicles at hospital facilities and community camps. Chest X-rays were offered to individuals aged ≥15 years, regardless of symptoms. Those with a CAD4TB score of ≥70 were offered Xpert testing. The association between Xpert positivity and CAD4TB scores was examined using data collected between 1 January and 30 June 2018 using a custom-built data collection tool.RESULTS: Of the 127 062 individuals screened, 97.2% had a valid CAD4TB score; 11 184 (9.1%) individuals had a CAD4TB score ≥70. Prevalence of Xpert positivity rose from 0.7% in the <50 category to 23.5% in the >90 category. The strong linear association between CAD4TB score and Xpert positivity was found in both community and hospital settings.CONCLUSION: The strong association between CAD4TB scores and Xpert positivity provide evidence that an ACR-based pre-screening performs well when implemented at scale in a high-burden setting.


2020 ◽  
Vol 10 (2) ◽  
pp. 348-355
Author(s):  
Xin Huang ◽  
Yu Fang ◽  
Mingming Lu ◽  
Fengqi Yan ◽  
Jun Yang ◽  
...  

Computer-aided diagnosis (CAD) is an important work which can improve the working efficiency of physicians. With the availability of large-scale data sets, several methods have been proposed to classify pathology on chest X-ray images. However, most methods report performance based on a frontal chest radiograph, ignoring the effect of the lateral chest radiography on the diagnosis. This paper puts forward a kind of model, Dual-Ray Net, of a deep convolutional neural network which can deal with the front and lateral chest radiography at the same time by referring the method of using lateral chest radiography to assist diagnose during the diagnosis used by radiologists. Firstly, we evaluated the performance of parameter migration to small data after pre-training for large datasets. The data sets for pre-training are chest X-ray 14 and ImageNet respectively. The results showed that pre-training with chest X-ray 14 performed better than with the generic dataset ImageNet. Secondly, We evaluated the performance of the Frontal and lateral chest radiographs in different modes of input model for the diagnosis of assisted chest disease. Finally, by comparing different feature fusion methods of addition and concatenation, we found that the fusion effect of concatenation is better, which average AUC reached 0.778. The comparison results show that whether it is a public or a non-public dataset, our Dual-Ray Net (concatenation) architecture shows improved performance in recognizing findings in CXR images when compared to applying separate baseline frontal and lateral classes.


1994 ◽  
Vol 144 ◽  
pp. 82
Author(s):  
E. Hildner

AbstractOver the last twenty years, orbiting coronagraphs have vastly increased the amount of observational material for the whitelight corona. Spanning almost two solar cycles, and augmented by ground-based K-coronameter, emission-line, and eclipse observations, these data allow us to assess,inter alia: the typical and atypical behavior of the corona; how the corona evolves on time scales from minutes to a decade; and (in some respects) the relation between photospheric, coronal, and interplanetary features. This talk will review recent results on these three topics. A remark or two will attempt to relate the whitelight corona between 1.5 and 6 R⊙to the corona seen at lower altitudes in soft X-rays (e.g., with Yohkoh). The whitelight emission depends only on integrated electron density independent of temperature, whereas the soft X-ray emission depends upon the integral of electron density squared times a temperature function. The properties of coronal mass ejections (CMEs) will be reviewed briefly and their relationships to other solar and interplanetary phenomena will be noted.


Author(s):  
R. H. Duff

A material irradiated with electrons emits x-rays having energies characteristic of the elements present. Chemical combination between elements results in a small shift of the peak energies of these characteristic x-rays because chemical bonds between different elements have different energies. The energy differences of the characteristic x-rays resulting from valence electron transitions can be used to identify the chemical species present and to obtain information about the chemical bond itself. Although these peak-energy shifts have been well known for a number of years, their use for chemical-species identification in small volumes of material was not realized until the development of the electron microprobe.


Author(s):  
E. A. Kenik ◽  
J. Bentley

Cliff and Lorimer (1) have proposed a simple approach to thin foil x-ray analy sis based on the ratio of x-ray peak intensities. However, there are several experimental pitfalls which must be recognized in obtaining the desired x-ray intensities. Undesirable x-ray induced fluorescence of the specimen can result from various mechanisms and leads to x-ray intensities not characteristic of electron excitation and further results in incorrect intensity ratios.In measuring the x-ray intensity ratio for NiAl as a function of foil thickness, Zaluzec and Fraser (2) found the ratio was not constant for thicknesses where absorption could be neglected. They demonstrated that this effect originated from x-ray induced fluorescence by blocking the beam with lead foil. The primary x-rays arise in the illumination system and result in varying intensity ratios and a finite x-ray spectrum even when the specimen is not intercepting the electron beam, an ‘in-hole’ spectrum. We have developed a second technique for detecting x-ray induced fluorescence based on the magnitude of the ‘in-hole’ spectrum with different filament emission currents and condenser apertures.


Author(s):  
W. Brünger

Reconstructive tomography is a new technique in diagnostic radiology for imaging cross-sectional planes of the human body /1/. A collimated beam of X-rays is scanned through a thin slice of the body and the transmitted intensity is recorded by a detector giving a linear shadow graph or projection (see fig. 1). Many of these projections at different angles are used to reconstruct the body-layer, usually with the aid of a computer. The picture element size of present tomographic scanners is approximately 1.1 mm2.Micro tomography can be realized using the very fine X-ray source generated by the focused electron beam of a scanning electron microscope (see fig. 2). The translation of the X-ray source is done by a line scan of the electron beam on a polished target surface /2/. Projections at different angles are produced by rotating the object.During the registration of a single scan the electron beam is deflected in one direction only, while both deflections are operating in the display tube.


Author(s):  
L. T. Germinario

Understanding the role of metal cluster composition in determining catalytic selectivity and activity is of major interest in heterogeneous catalysis. The electron microscope is well established as a powerful tool for ultrastructural and compositional characterization of support and catalyst. Because the spatial resolution of x-ray microanalysis is defined by the smallest beam diameter into which the required number of electrons can be focused, the dedicated STEM with FEG is the instrument of choice. The main sources of errors in energy dispersive x-ray analysis (EDS) are: (1) beam-induced changes in specimen composition, (2) specimen drift, (3) instrumental factors which produce background radiation, and (4) basic statistical limitations which result in the detection of a finite number of x-ray photons. Digital beam techniques have been described for supported single-element metal clusters with spatial resolutions of about 10 nm. However, the detection of spurious characteristic x-rays away from catalyst particles produced images requiring several image processing steps.


Author(s):  
W. Z. Chang ◽  
D. B. Wittry

Since Du Mond and Kirkpatrick first discussed the principle of a bent crystal spectrograph in 1930, curved single crystals have been widely utilized as spectrometric monochromators as well as diffractors for focusing x rays diverging from a point. Curved crystal diffraction theory predicts that the diffraction parameters - the rocking curve width w, and the peak reflection coefficient r of curved crystals will certainly deviate from those of their flat form. Due to a lack of curved crystal parameter data in current literature and the need for optimizing the choice of diffraction geometry and crystal materials for various applications, we have continued the investigation of our technique presented at the last conference. In the present abstract, we describe a more rigorous and quantitative procedure for measuring the parameters of curved crystals.The diffraction image of a singly bent crystal under study can be obtained by using the Johann geometry with an x-ray point source.


Author(s):  
Shawn Williams ◽  
Xiaodong Zhang ◽  
Susan Lamm ◽  
Jack Van’t Hof

The Scanning Transmission X-ray Microscope (STXM) is well suited for investigating metaphase chromosome structure. The absorption cross-section of soft x-rays having energies between the carbon and oxygen K edges (284 - 531 eV) is 6 - 9.5 times greater for organic specimens than for water, which permits one to examine unstained, wet biological specimens with resolution superior to that attainable using visible light. The attenuation length of the x-rays is suitable for imaging micron thick specimens without sectioning. This large difference in cross-section yields good specimen contrast, so that fewer soft x-rays than electrons are required to image wet biological specimens at a given resolution. But most imaging techniques delivering better resolution than visible light produce radiation damage. Soft x-rays are known to be very effective in damaging biological specimens. The STXM is constructed to minimize specimen dose, but it is important to measure the actual damage induced as a function of dose in order to determine the dose range within which radiation damage does not compromise image quality.


Author(s):  
J. R. Michael

X-ray microanalysis in the analytical electron microscope (AEM) refers to a technique by which chemical composition can be determined on spatial scales of less than 10 nm. There are many factors that influence the quality of x-ray microanalysis. The minimum probe size with sufficient current for microanalysis that can be generated determines the ultimate spatial resolution of each individual microanalysis. However, it is also necessary to collect efficiently the x-rays generated. Modern high brightness field emission gun equipped AEMs can now generate probes that are less than 1 nm in diameter with high probe currents. Improving the x-ray collection solid angle of the solid state energy dispersive spectrometer (EDS) results in more efficient collection of x-ray generated by the interaction of the electron probe with the specimen, thus reducing the minimum detectability limit. The combination of decreased interaction volume due to smaller electron probe size and the increased collection efficiency due to larger solid angle of x-ray collection should enhance our ability to study interfacial segregation.


Sign in / Sign up

Export Citation Format

Share Document