scholarly journals Social deprivation as a risk factor for COVID-19 mortality among women and men in the UK Biobank: nature of risk and context suggests that social interventions are essential to mitigate the effects of future pandemics

2021 ◽  
pp. jech-2020-215810
Author(s):  
Mark Woodward ◽  
Sanne A E Peters ◽  
Katie Harris

ObjectivesTo investigate sex differences in the effects of social deprivation on COVID-19 mortality and to place these effects in context with other diseases.DesignProspective population-based study.SettingUK Biobank.Participants501 865 participants (54% women).Main outcome measureCOVID-19 as the underlying cause of death.ResultsOf 472 946 participants alive when COVID-19 was first apparent in the UK (taken as 1 February 2020), 217 (34% women) died from COVID-19 over the next 10 months, resulting in an incidence, per 100 000 person years, of 100.65 (95% CI 79.47 to 121.84) for women and 228.59 (95% CI 194.88 to 262.30) for men. Greater social deprivation, quantified using the Townsend Deprivation Score, was associated with greater risk of fatal COVD-19. Adjusted for age and ethnicity, HRs for women and men, comparing those in the most with the least deprived national fifths, were 3.66 (2.82 to 4.75) for women and 3.00 (2.46 to 3.66) for men. Adjustments for key baseline lifestyle factors attenuated these HRs to 2.20 (1.63 to 2.96) and 2.62 (2.12 to 3.24), respectively. There was evidence of a log-linear trend in the deprivation–fatal COVID-19 association, of similar magnitude to the equivalent trends for the associations between deprivation and fatal influenza or pneumonia and fatal cardiovascular disease. For all three causes of death, there was no evidence of a sex difference in the associations.ConclusionsHigher social deprivation is a risk factor for death from COVID-19 on a continuous scale, with two to three times the risk in the most disadvantaged 20% compared with the least. Similarities between the social gradients in COVID-19, influenza/pneumonia and cardiovascular disease mortality, the lack of sex differences in these effects, and the partial mediation of lifestyle factors suggest that better social policies are crucial to alleviate the general medical burden, including from the current, and potential future, viral pandemics.

2021 ◽  
pp. 1-24
Author(s):  
Briar L McKenzie ◽  
Katie Harris ◽  
Sanne A E Peters ◽  
Jacqui Webster ◽  
Mark Woodward

Abstract This study aimed to investigate the association between individual, and combinations of, macronutrients with premature death, cardiovascular disease (CVD) and dementia. Sex differences were investigated. Data were utilised from a prospective cohort of 120,963 individuals (57% female) within the UK Biobank, who completed ≥two 24-hour diet recalls. The associations of macronutrients, as percentages of total energy intake, with outcomes were investigated. Combinations of macronutrients were defined using k-means cluster analysis, with clusters explored in association with outcomes. There was a higher risk of death with high carbohydrate intake (Hazard ratios (HRs), 95% confidence intervals (95% CI) upper v lowest third 1.13 (1.03, 1.23)), yet a lower risk with higher intakes of protein (upper v lowest third 0.82 (0.76, 0.89)). There was a lower risk of CVD with moderate intakes (middle v lowest third) of energy and protein (sub distribution HRs (SHR), 0.87 (0.79, 0.97) and (0.87 (0.79, 0.96)) respectively). There was a lower risk of dementia with moderate energy intake (SHR 0.71 (0.52, 0.96)). Sex differences were identified. The dietary cluster characterised by low carbohydrate, low fat and high protein was associated with a lower risk of death (HR 0.84 (0.76, 0.93)) compared to the reference cluster, and a lower risk of CVD for men (SHR 0.83 (0.71, 0.97)). Given that associations were evident, both as single macronutrients and for combinations with other macronutrients for death, and for CVD in men, we suggest that the biggest benefit from diet-related policy and interventions will be when combinations of macronutrients are targeted.


Author(s):  
Anurag Sethi ◽  
Leland Taylor ◽  
J Graham Ruby ◽  
Jagadish Venkataraman ◽  
Madeleine Cule ◽  
...  

AbstractBackgroundCalcification of the abdominal artery is an important contributor to cardiovascular disease in diabetic and chronic kidney disease (CKD) populations. However, prevalence of the pathology, risk factors, and long term disease outcomes in a general population have not been systematically analyzed.MethodWe developed machine learning models to quantify levels of abdominal aortic calcification (AAC) in 29,957 whole body dual-energy X-ray absorptiometry (DEXA) scans from the UK Biobank cohort. Using regression techniques we associated severity of calcification across a wide range of physiological parameters, clinical biomarkers, and environmental risk factors (406 in total). We performed a common variant genetic association study spanning 9,572,557 single-nucleotide polymorphisms to identify genetic loci relevant to AAC. We evaluated the prognostic value of AAC across 151 disease classes using Cox proportional hazard models. We further examined an epidemiological model of calcification on cardiovascular morbidity with and without LDL interactions.FindingsWe find evidence for AAC in >10.4% of the cohort despite low prevalence of diabetes (2.5%) and CKD (0.5%). Increased level of AAC is a strong prognostic indicator of cardiovascular outcomes for stenosis of precerebral arteries (HR~1.5), Myocardial Infarction (HR~1.5), & Ischemic Heart Disease (HR~1.33). We find that AAC is genetically correlated with cardiovascular-related traits and that the genetic signals are enriched in vascular and adipose tissue. We report three loci associated with AAC, with the strongest association occuring at the TWIST1/HDAC9 locus (beta=0.078, p-value=1.4e-11) in a region also associated with coronary artery disease. Surprisingly, we find that elevated but still within clinically normal levels of serum phosphate and glycated hemoglobin are linked to increased vascular calcification. Furthermore, we show AAC arises in the absence of hypercholesterolemia. By our estimate, AAC is an LDL-independent risk factor for cardiovascular outcomes, with risk similar to elevated LDL.DataThis research has been conducted using the UK Biobank Resource.


BMJ ◽  
2021 ◽  
pp. n214
Author(s):  
Weedon MN ◽  
Jackson L ◽  
Harrison JW ◽  
Ruth KS ◽  
Tyrrell J ◽  
...  

Abstract Objective To determine whether the sensitivity and specificity of SNP chips are adequate for detecting rare pathogenic variants in a clinically unselected population. Design Retrospective, population based diagnostic evaluation. Participants 49 908 people recruited to the UK Biobank with SNP chip and next generation sequencing data, and an additional 21 people who purchased consumer genetic tests and shared their data online via the Personal Genome Project. Main outcome measures Genotyping (that is, identification of the correct DNA base at a specific genomic location) using SNP chips versus sequencing, with results split by frequency of that genotype in the population. Rare pathogenic variants in the BRCA1 and BRCA2 genes were selected as an exemplar for detailed analysis of clinically actionable variants in the UK Biobank, and BRCA related cancers (breast, ovarian, prostate, and pancreatic) were assessed in participants through use of cancer registry data. Results Overall, genotyping using SNP chips performed well compared with sequencing; sensitivity, specificity, positive predictive value, and negative predictive value were all above 99% for 108 574 common variants directly genotyped on the SNP chips and sequenced in the UK Biobank. However, the likelihood of a true positive result decreased dramatically with decreasing variant frequency; for variants that are very rare in the population, with a frequency below 0.001% in UK Biobank, the positive predictive value was very low and only 16% of 4757 heterozygous genotypes from the SNP chips were confirmed with sequencing data. Results were similar for SNP chip data from the Personal Genome Project, and 20/21 individuals analysed had at least one false positive rare pathogenic variant that had been incorrectly genotyped. For pathogenic variants in the BRCA1 and BRCA2 genes, which are individually very rare, the overall performance metrics for the SNP chips versus sequencing in the UK Biobank were: sensitivity 34.6%, specificity 98.3%, positive predictive value 4.2%, and negative predictive value 99.9%. Rates of BRCA related cancers in UK Biobank participants with a positive SNP chip result were similar to those for age matched controls (odds ratio 1.31, 95% confidence interval 0.99 to 1.71) because the vast majority of variants were false positives, whereas sequence positive participants had a significantly increased risk (odds ratio 4.05, 2.72 to 6.03). Conclusions SNP chips are extremely unreliable for genotyping very rare pathogenic variants and should not be used to guide health decisions without validation.


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
D Radenkovic ◽  
S.C Chawla ◽  
G Botta ◽  
A Boli ◽  
M.B Banach ◽  
...  

Abstract   The two leading causes of mortality worldwide are cardiovascular disease (CVD) and cancer. The annual total cost of CVD and cancer is an estimated $844.4 billion in the US and is projected to double by 2030. Thus, there has been an increased shift to preventive medicine to improve health outcomes and development of risk scores, which allow early identification of individuals at risk to target personalised interventions and prevent disease. Our aim was to define a Risk Score R(x) which, given the baseline characteristics of a given individual, outputs the relative risk for composite CVD, cancer incidence and all-cause mortality. A non-linear model was used to calculate risk scores based on the participants of the UK Biobank (= 502548). The model used parameters including patient characteristics (age, sex, ethnicity), baseline conditions, lifestyle factors of diet and physical activity, blood pressure, metabolic markers and advanced lipid variables, including ApoA and ApoB and lipoprotein(a), as input. The risk score was defined by normalising the risk function by a fixed value, the average risk of the training set. To fit the non-linear model >400,000 participants were used as training set and >45,000 participants were used as test set for validation. The exponent of risk function was represented as a multilayer neural network. This allowed capturing interdependent behaviour of covariates, training a single model for all outcomes, and preserving heterogeneity of the groups, which is in contrast to CoxPH models which are traditionally used in risk scores and require homogeneous groups. The model was trained over 60 epochs and predictive performance was determined by the C-index with standard errors and confidence intervals estimated with bootstrap sampling. By inputing the variables described, one can obtain personalised hazard ratios for 3 major outcomes of CVD, cancer and all-cause mortality. Therefore, an individual with a risk Score of e.g. 1.5, at any time he/she has 50% more chances than average of experiencing the corresponding event. The proposed model showed the following discrimination, for risk of CVD (C-index = 0.8006), cancer incidence (C-index = 0.6907), and all-cause mortality (C-index = 0.7770) on the validation set. The CVD model is particularly strong (C-index >0.8) and is an improvement on a previous CVD risk prediction model also based on classical risk factors with total cholesterol and HDL-c on the UK Biobank data (C-index = 0.7444) published last year (Welsh et al. 2019). Unlike classically-used CoxPH models, our model considers correlation of variables as shown by the table of the values of correlation in Figure 1. This is an accurate model that is based on the most comprehensive set of patient characteristics and biomarkers, allowing clinicians to identify multiple targets for improvement and practice active preventive cardiology in the era of precision medicine. Figure 1. Correlation of variables in the R(x) Funding Acknowledgement Type of funding source: None


BMC Medicine ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Jessica Gong ◽  
Katie Harris ◽  
Sanne A. E. Peters ◽  
Mark Woodward

Abstract Background Sex differences in major cardiovascular risk factors for incident (fatal or non-fatal) all-cause dementia were assessed in the UK Biobank. The effects of these risk factors on all-cause dementia were explored by age and socioeconomic status (SES). Methods Cox proportional hazards models were used to estimate hazard ratios (HRs) and women-to-men ratio of HRs (RHR) with 95% confidence intervals (CIs) for systolic blood pressure (SBP) and diastolic blood pressure (DBP), smoking, diabetes, adiposity, stroke, SES and lipids with dementia. Poisson regression was used to estimate the sex-specific incidence rate of dementia for these risk factors. Results 502,226 individuals in midlife (54.4% women, mean age 56.5 years) with no prevalent dementia were included in the analyses. Over 11.8 years (median), 4068 participants (45.9% women) developed dementia. The crude incidence rates were 5.88 [95% CI 5.62–6.16] for women and 8.42 [8.07–8.78] for men, per 10,000 person-years. Sex was associated with the risk of dementia, where the risk was lower in women than men (HR = 0.83 [0.77–0.89]). Current smoking, diabetes, high adiposity, prior stroke and low SES were associated with a greater risk of dementia, similarly in women and men. The relationship between blood pressure (BP) and dementia was U-shaped in men but had a dose-response relationship in women: the HR for SBP per 20 mmHg was 1.08 [1.02–1.13] in women and 0.98 [0.93–1.03] in men. This sex difference was not affected by the use of antihypertensive medication at baseline. The sex difference in the effect of raised BP was consistent for dementia subtypes (vascular dementia and Alzheimer’s disease). Conclusions Several mid-life cardiovascular risk factors were associated with dementia similarly in women and men, but not raised BP. Future bespoke BP-lowering trials are necessary to understand its role in restricting cognitive decline and to clarify any sex difference.


Nutrients ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 2218
Author(s):  
Shuai Yuan ◽  
Paul Carter ◽  
Amy M. Mason ◽  
Stephen Burgess ◽  
Susanna C. Larsson

Coffee consumption has been linked to a lower risk of cardiovascular disease in observational studies, but whether the associations are causal is not known. We conducted a Mendelian randomization investigation to assess the potential causal role of coffee consumption in cardiovascular disease. Twelve independent genetic variants were used to proxy coffee consumption. Summary-level data for the relations between the 12 genetic variants and cardiovascular diseases were taken from the UK Biobank with up to 35,979 cases and the FinnGen consortium with up to 17,325 cases. Genetic predisposition to higher coffee consumption was not associated with any of the 15 studied cardiovascular outcomes in univariable MR analysis. The odds ratio per 50% increase in genetically predicted coffee consumption ranged from 0.97 (95% confidence interval (CI), 0.63, 1.50) for intracerebral hemorrhage to 1.26 (95% CI, 1.00, 1.58) for deep vein thrombosis in the UK Biobank and from 0.86 (95% CI, 0.50, 1.49) for subarachnoid hemorrhage to 1.34 (95% CI, 0.81, 2.22) for intracerebral hemorrhage in FinnGen. The null findings remained in multivariable Mendelian randomization analyses adjusted for genetically predicted body mass index and smoking initiation, except for a suggestive positive association for intracerebral hemorrhage (odds ratio 1.91; 95% CI, 1.03, 3.54) in FinnGen. This Mendelian randomization study showed limited evidence that coffee consumption affects the risk of developing cardiovascular disease, suggesting that previous observational studies may have been confounded.


Author(s):  
Audrey C. Leasure ◽  
Julian N. Acosta ◽  
Lauren H. Sansing ◽  
Kevin N. Sheth ◽  
Jeffrey M. Cohen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document