454 Oncolytic parainfluenza virus 5 vector enhances natural killer cell killing of lung tumor cells in 2D and 3D spheroid cultures

2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A481-A481
Author(s):  
Namita Varudkar ◽  
Jeremiah Oyer ◽  
Alicja Copik ◽  
Griffith Parks

BackgroundNatural killer (NK) cells are innate immune cells with natural cytotoxicity towards both tumor cells and virus infected cells. We have developed a particle-based method for in vitro specific expansion of NK cells that yields highly cytotoxic NK cells (PM21-NK cells). There is intense interest in the use of novel oncolytic viruses with the potential to synergize with immune cells to kill tumor cells. Here we have tested the hypothesis that infection with a tumor-selective cytopathic Parainfluenza virus 5 (PIV5-P/V) vector will enhance PM21-NK cell-mediated killing of lung cancer cells in both 2-dimensional (2D) and 3-dimensional (3D) cultures.MethodsIn 2D cultures, live cell time-lapse imaging, flow cytometry and luminescence-based methods were used to assess the killing efficiency of PM21-NK cells against A549 lung tumor cells infected with PIV5-P/V. Blocking antibodies were used to evaluate different NK cell activating receptors involved in recognition of infected tumor cells. IncuCyte live cell imaging system was used to assess real time killing of 3D lung spheroids by a combination of NK cells and PIV5-P/V virus. Z-stack spheroid images were captured using Keyence microscope.ResultsIn 2D cultures, PM21 NK cells efficiently kill A549 cells that have been infected with P/V CPI- virus and enhance the overall rate of killing compared to uninfected cell targets. Antibody blocking showed that the viral Hemagglutinin-Neuraminidase (HN) glycoprotein and NK cell receptors NKp30, NKp46 and NKG2D were involved in PM21-NK cell recognition of PIV5-P/V infected A549 cells. In 3D cultures of A549 tumor spheroids, PIV5-P/V infection was limited to the outer layer of the spheroid, with restricted spread of the infection to inner compartments. However, addition of PM21-NK cells to PIV5-P/V-infected spheroids resulted in killing of not only the infected surface of the spheroid but continued to the uninfected cells located at the center of the spheroid.ConclusionsOur data support the potential of combining oncolytic virotherapy along with PM21-NK cell adoptive therapy against lung cancer.

Author(s):  
Ana Vuletić ◽  
Katarina Mirjačić Martinović ◽  
Nevena Tišma Miletić ◽  
Jerome Zoidakis ◽  
Sergi Castellvi-Bel ◽  
...  

Tumor cells undergoing epithelial to mesenchymal transition (EMT) and immune cells in tumor microenvironment (TME) reciprocally influence each other. Immune cells, by supplying TME with bioactive molecules including cytokines, chemokines, enzymes, metabolites, and by physical interactions with tumor cells via their receptors, represent an important factor that affects EMT. Chronical inflammation in TME favorizes tumor growth and invasiveness and stimulates synthesis of EMT promoting transcription factors. Natural killer (NK) cells, owing to their unique ability to exert cytotoxic function independent of major histocompatibility (MHC)-mediated antigen presentation, play a significant role in the control of metastasis in colorectal cancer (CRC). Although, the cross-talk between immune cells and tumor cells in general favors the induction of EMT and inhibition of antitumor immune responses, there are some changes in the immunogenicity of tumor cells during EMT of CRC cells that increase their susceptibility to NK cell cytotoxic lysis. However, suppressive TME downmodulates the expression of activating NK cell receptors, decreases the expression of activating and increases the expression of inhibitory NK cell ligands on tumor cells, and impairs NK cell metabolism that altogether negatively affects the overall NK cell function. Furthermore, process of EMT is often associated with increased expression of programmed cell death ligand (PD-L) and expression of immune checkpoint molecules PD-1, TIGIT, and TIM3 on functionally exhausted NK cells in TME in CRC. In this review we discuss modalities of cross-talk between tumor cells and NK cells, with regard of EMT-driven changes.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Hee Young Na ◽  
Yujun Park ◽  
Soo Kyung Nam ◽  
Jiwon Koh ◽  
Yoonjin Kwak ◽  
...  

Abstract Background Natural killer (NK) cells mediate the anti-tumoral immune response as an important component of innate immunity. The aim of this study was to investigate the prognostic significance and functional implication of NK cell-associated surface receptors in gastric cancer (GC) by using multiplex immunohistochemistry (mIHC). Methods We performed an mIHC on tissue microarray slides, including 55 GC tissue samples. A total of 11 antibodies including CD57, NKG2A, CD16, HLA-E, CD3, CD20, CD45, CD68, CK, SMA, and ki-67 were used. CD45 + CD3-CD57 + cells were considered as CD57 + NK cells. Results Among CD45 + immune cells, the proportion of CD57 + NK cell was the lowest (3.8%), whereas that of CD57 + and CD57- T cells (65.5%) was the highest, followed by macrophages (25.4%), and B cells (5.3%). CD57 + NK cells constituted 20% of CD45 + CD57 + immune cells while the remaining 80% were CD57 + T cells. The expression of HLA-E in tumor cells correlated with that in tumoral T cells, B cells, and macrophages, but not CD57 + NK cells. The higher density of tumoral CD57 + NK cells and tumoral CD57 + NKG2A + NK cells was associated with inferior survival. Conclusions Although the number of CD57 + NK cells was lower than that of other immune cells, CD57 + NK cells and CD57 + NKG2A + NK cells were significantly associated with poor outcomes, suggesting that NK cell subsets play a critical role in GC progression. NK cells and their inhibitory receptor, NKG2A, may be potential targets in GC.


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A834-A834
Author(s):  
Xue Yao ◽  
Sandro Matosevic

BackgroundThe effectiveness of natural killer (NK) cell-based immunotherapy against solid tumors is limited by the lack of specific antigens and the immunosuppressive tumor microenvironment (TME). Glioblastoma multiforme (GBM) is one such heavily immunosuppressive tumor that has been particularly hard to target and remains without a viable treatment. The development of novel approaches to enhance the efficacy of NK cells against GBM is urgently needed. NK cell engagers (NKCE) have been developed to enhance the efficacy of NK cell therapy.MethodsTo improve the clinical efficacy of NK cell therapy, we are developing a new generation of multi-specific killer engagers, which consists of a neoantigen-targeting moiety, together with cytokine and chemokine-producing domains. Neoantigens are new antigens formed specifically in tumor cells due to genome mutations, making them highly specific tools to target tumor cells. Our engager has been designed to target Wilms' tumor-1 (WT-1), a highly specific antigen overexpressed in GBM among other solid tumors. This is done through the generation of an scFv specific targeting the complex of WT-1126-134/HLA-A*02:01 on the surface of GBM. On the NK cell side, the engager is designed to target the activating receptor NKp46. Incorporation of the cytokine IL-15 within the engager supports the maturation, persistence, and expansion of NK cells in vivo while favoring their proliferation and survival in the tumor microenvironment. Additionally, our data indicated that the chemokine CXCL10 plays an important role in the infiltration of NK cells into GBM, however, GBM tumors produce low levels of this chemokine. Incorporation of a CXCL10-producing function into our engager supports intratumoral NK cell trafficking by promoting, through their synthetic production, increased levels of CXCL10 locally in the tumor microenvironment.ResultsCollectively, this has resulted in a novel multifunctional NK cell engager, combining neoantigen-cytokine-chemokine elements fused to an activating domain-specific to NK cells, and we have investigated its ability to support and enhance NK cell-mediated cytotoxicity against solid tumors in vitro and in vivo against patient-derived GBM models. The multi-specific engager shows both high tumor specificity, as well as the ability to overcome NK cell dysfunction encountered in the GBM TME.ConclusionsWe hypothesize that taking advantage of our multi-functional engager, NK cells will exhibit superior ex vivo expansion, infiltration, and antitumor activity in the treatment of GBM and other solid tumors.


Cancers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 4037
Author(s):  
Pankaj Ahluwalia ◽  
Meenakshi Ahluwalia ◽  
Ashis K. Mondal ◽  
Nikhil S. Sahajpal ◽  
Vamsi Kota ◽  
...  

Non-small cell lung cancer (NSCLC) is a major subtype of lung cancer that accounts for almost 85% of lung cancer cases worldwide. Although recent advances in chemotherapy, radiotherapy, and immunotherapy have helped in the clinical management of these patients, the survival rate in advanced stages remains dismal. Furthermore, there is a critical lack of accurate prognostic and stratification markers for emerging immunotherapies. To harness immune response modalities for therapeutic benefits, a detailed understanding of the immune cells in the complex tumor microenvironment (TME) is required. Among the diverse immune cells, natural killer (NK cells) and dendritic cells (DCs) have generated tremendous interest in the scientific community. NK cells play a critical role in tumor immunosurveillance by directly killing malignant cells. DCs link innate and adaptive immune systems by cross-presenting the antigens to T cells. The presence of an immunosuppressive milieu in tumors can lead to inactivation and poor functioning of NK cells and DCs, which results in an adverse outcome for many cancer patients, including those with NSCLC. Recently, clinical intervention using modified NK cells and DCs have shown encouraging response in advanced NSCLC patients. Herein, we will discuss prognostic and predictive aspects of NK cells and DC cells with an emphasis on NSCLC. Additionally, the discussion will extend to potential strategies that seek to enhance the anti-tumor functionality of NK cells and DCs.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 2706-2706 ◽  
Author(s):  
Shivani Srivastava ◽  
Hailin Feng ◽  
Shuhong Zhang ◽  
Jing Liang ◽  
Patrick Squiban ◽  
...  

Abstract Abstract 2706 Poster Board II-682 Follicular lymphoma is incurable with the current chemo- or chemoimmunotherapy with median survival of 8–12 years. Relapse free survival after each subsequent therapy steadily decreases, resulting in an expected median survival of 4.5 years following initial relapse. Hence new treatment strategies are needed. Natural killer (NK) cells are important effector cells in mediating the anti-lymphoma effect of rituximab. Indeed, antibody-dependent cell-mediated cytotoxicity (ADCC) is a major mechanisms of action of rituximab with NK cells being important effector cells. However, in addition to ADCC, NK cells also exert natural cytotoxicity against tumor cells, which is modulated by a balance of inhibitory and activating signals through NK cell receptors. NK cell function is inhibited when their inhibitory killer immunoglobulin-like receptors (KIR) are ligated by their cognate MHC class I antigens on tumor targets. The novel agent IPH2101 (1-7F9) is a fully human monoclonal antibody directed against KIR2DL receptor that blocks the interaction of KIR with its HLA-C ligands breaking NK cell tolerance to autologous tumor cells. We investigated whether the combination of the IPH2101and Rituximab will augment the NK cell mediated cytotoxicity against CD20+ lymphoma targets as compared to rituximab alone. Raji cells are human CD20+ Burkitt lymphoma cell line cells that expresses HLA-A*03,- (ligand to inhibitory KIR3DL2); -B*71[Bw6] (no inhibitory KIR-Ligand) and -Cw*03,w*04 (group 1 and 2 of HLA-C ligands to inhibitory KIR2DL2/3 and KIR2DL1), and were chosen for study because they have HLA-C antigens that ligate the inhibitory KIR2DL2/3 and KIR2DLI receptors, making them a good target to test our hypothesis of inhibiting inhibitory KIR. NK cells were isolated from normal donor PBMC (peripheral blood mononuclear cells) with the Miltenyi NK isolation Kit. Using LDH release based cytotoxicity assay, we show (Figure 1) that the treatment of target Raji cells with Rituximab significantly enhanced natural cytotoxicity of the purified NK cells against Raji cells. IPH2101alone treatment of NK cells also significantly enhanced the cytotoxicity of Raji cells, however, the combination of IPH2101treated NK cells against Rituximab treated Raji cells significantly enhanced cytotoxicity beyond that observed with each agent alone. Effector: Target (E:T) ratios of 14:1 or less, from more than 5 random donors showed similar results indicating a synergistic, or at least and additive effect ( representative experiment shown Figure 1) . In these experiments purified NK cells were treated with 30ug/ml of IPH2101for 30 min and Raji targets were treated with 0.1-30ug/ml of Rituximab for 30 min. NK cells in the presence or absence of IPH2101were co-cultured with Raji cells in the presence or absence of Rituximab for 4 hour in a 96 well plate. NK cytotoxicity was assessed with an LDH release based assay. Our results suggest that there is a positive cooperation between natural cytotoxicity mediated through KIR-MHC blockade and that mediated by ADCC. Indeed, wee have shown that the blockade of KIR-MHC class I interaction by anti-KIR blocking antibody (IPH2101) augments the cytotoxicity of freshly isolated normal donor NK cells against CD20+ lymphoma cell lines as compared to rituximab alone, providing a rationale for the clinical investigation of the combination of IPH2101 (1-7F9) and rituximab in non-Hodgkin's lymphoma Disclosures: Squiban: Innate pharma: Employment.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 4034-4034
Author(s):  
David A. Knorr ◽  
Zhenya Ni ◽  
Allison Bock ◽  
Vijay G. Ramakrishnan ◽  
Shaji Kumar ◽  
...  

Abstract Abstract 4034 Natural Killer (NK) cells are lymphocytes of the innate immune system with anti-viral and anti-cancer activity. Over the past decade, they have gained interest as a promising cellular source for use in adoptive immunotherapy for the treatment of cancer. Most notably, NK cells play an important role in the graft-vs-tumor effect seen in allogeneic hematopoietic stem cell transplantation (allo-HSCT), and a better understanding of NK cell biology has translated into improved transplant outcomes in acute myelogenous leukemia (AML). Small studies have demonstrated a role for NK cell activity in multiple myeloma (MM) patients receiving allo-HSCT. Investigators have also utilized haplo-identical killer immunoglobulin-like receptor (KIR) mismatched NK cells for adoptive immunotherapy in patients with multiple myeloma (MM). Our group has focused on the development of NK cells from human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) as a novel starting source of lymphocytes for immunotherapy. We have previously demonstrated potent anti-tumor activity of hESC-derived NK cells in vitro and in vivo against a variety of different targets. We have also shown that iPSC-derived NK cells from a variety of different somatic cell starting sources posses potent anti-tumor and anti-viral activity. Here, we demonstrate hESC- and iPSC-derived NK cell development in a completely defined, feeder-free system that is amenable to clinical scale-up. These cultures contain a pure population of mature NK cells devoid of any T or B cell contamination, which are common adverse bystanders of cellular products isolated and enriched from peripheral blood. Our cultures are homogenous for their expression of CD56 and express high levels of effector molecules known to be important in anti-MM activity, including KIR, CD16, NKG2D, NKp46, NKp44, FasL and TRAIL. We have now tested the activity of hESC- and iPSC-derived NK cells against MM tumor cells in order to provide a universal source of lymphocytes for adoptive immunotherapy in patients with treatment refractory disease. We find that similar to peripheral blood NK cells (PB-NK), hESC- and iPSC-derived NK cells are cytotoxic against 3 distinct MM cell lines in a standard chromium release cytotoxicity assay. Specifically, activated PB-NK cells killed 48.5% of targets at 10 to 1 effector to target ratios, whereas hESC (46.3%) and iPSC (42.4%) derived NK cells also demonstrated significant anti-MM activity. Also, hESC- and iPSC-derived NK cells secrete cytokines (IFNγ and TNFα) and degranulate as demonstrated by CD107a surface expression in response to MM target cell stimulation. When tested against freshly isolated samples from MM patients, hESC- and IPSC-derived NK cells respond at a similar level as activated PB-NK cells, the current source of NK cells used in adoptive immunotherapy trials. These MM targets (both cell lines and primary tumor cells) are known to express defined ligands (MICA/B, DR4/5, ULBP-1, BAT3) for receptors expressed on NK cells as well as a number of undefined ligands for natural cytotoxicity receptors (NCRs) and KIR. As these receptor-ligand interactions drive the anti-MM activity of NK cells, we are currently evaluating expression of each of these molecules on the surface of both the effector and target cell populations. Not only do hESC- and iPSC-derived NK cells provide a unique, homogenous cell population to study these interactions, they also provide a genetically tractable source of lymphocytes for improvement of the graft-vs-myeloma effect and could be tailored on a patient specific basis using banks of hESC-or iPSC-derived NK cells with defined KIR genotypes for use as allogeneic or autologous effector cells. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2010 ◽  
Vol 116 (13) ◽  
pp. 2286-2294 ◽  
Author(s):  
Don M. Benson ◽  
Courtney E. Bakan ◽  
Anjali Mishra ◽  
Craig C. Hofmeister ◽  
Yvonne Efebera ◽  
...  

Abstract T-cell expression of programmed death receptor-1 (PD-1) down-regulates the immune response against malignancy by interacting with cognate ligands (eg, PD-L1) on tumor cells; however, little is known regarding PD-1 and natural killer (NK) cells. NK cells exert cytotoxicity against multiple myeloma (MM), an effect enhanced through novel therapies. We show that NK cells from MM patients express PD-1 whereas normal NK cells do not and confirm PD-L1 on primary MM cells. Engagement of PD-1 with PD-L1 should down-modulate the NK-cell versus MM effect. We demonstrate that CT-011, a novel anti–PD-1 antibody, enhances human NK-cell function against autologous, primary MM cells, seemingly through effects on NK-cell trafficking, immune complex formation with MM cells, and cytotoxicity specifically toward PD-L1+ MM tumor cells but not normal cells. We show that lenalidomide down-regulates PD-L1 on primary MM cells and may augment CT-011's enhancement of NK-cell function against MM. We demonstrate a role for the PD-1/PD-L1 signaling axis in the NK-cell immune response against MM and a role for CT-011 in enhancing the NK-cell versus MM effect. A phase 2 clinical trial of CT-011 in combination with lenalidomide for patients with MM should be considered.


2012 ◽  
Vol 302 (1) ◽  
pp. E108-E116 ◽  
Author(s):  
Christiane D. Wrann ◽  
Tobias Laue ◽  
Lena Hübner ◽  
Susanne Kuhlmann ◽  
Roland Jacobs ◽  
...  

Epidemiological studies have indicated that obesity is associated with a higher risk for certain cancers caused by elevated levels of adipocyte-derived hormones. Leptin, one such hormone produced by adipocytes, is a major regulator of metabolism and has also been shown to modulate immunity. However, its role in regulating human natural killer (NK) cell functions is largely unknown. Here, we show that the leptin receptor (Ob-R) is expressed on 5% of NK cells isolated from blood donors, as measured with flow cytometry, and expression of the signal-transducing long form of the leptin receptor Ob-Rb was confirmed with quantitative PCR. The Ob-R+ subpopulation displayed a lower expression of CD16, a cell surface receptor mediating antibody-dependent activation. Short-term stimulation with leptin increased IFNγ secretion, CD69 activation marker expression, and cytotoxic lysis of tumor cells; this was mediated by an improved conjugate forming between NK cells and tumor cells as well as higher expression of tumor necrosis factor-related apoptosis-inducing ligand. On the contrary, long-term incubation with leptin significantly impaired these NK cell immune functions and decreased cell proliferation. In addition, phosphorylation of Jak-2 after leptin stimulation was reduced in peripheral mononuclear blood cells from obese humans compared with normal-weight controls. NK cells represent an immune cell population that is crucial for an effective antitumor response. Here, we show that long-term exposure to leptin, similarly to the situation in obese individuals with elevated serum leptin levels, significantly impairs integral parts of NK cell immune functions, possibly linking leptin to increased cancer susceptibility in obesity.


2020 ◽  
Vol 2020 ◽  
pp. 1-16 ◽  
Author(s):  
Chaopin Yang ◽  
Yue Li ◽  
Yaozhang Yang ◽  
Zhiyi Chen

NK cells are lymphocytes with antitumor properties and can directly lyse tumor cells in a non-MHC-restricted manner. However, the tumor microenvironment affects the immune function of NK cells, which leads to immune evasion. This may be related to the pathogenesis of some diseases. Therefore, great efforts have been made to improve the immunotherapy effect of natural killer cells. NK cells from different sources can meet different clinical needs, in order to minimize the inhibition of NK cells and maximize the response potential of NK cells, for example, modification of NK cells can increase the number of NK cells in tumor target area, change the direction of NK cells, and improve their targeting ability to malignant cells. Checkpoint blocking is also a promising strategy for NK cells to kill tumor cells. Combination therapy is another strategy for improving antitumor ability, especially in combination with oncolytic viruses and nanomaterials. In this paper, the mechanisms affecting the activity of NK cells were reviewed, and the therapeutic potential of different basic NK cell strategies in tumor therapy was focused on. The main strategies for improving the immune function of NK cells were described, and some new strategies were proposed.


2019 ◽  
Vol 20 (19) ◽  
pp. 4693 ◽  
Author(s):  
Nina Mallmann-Gottschalk ◽  
Yvonne Sax ◽  
Rainer Kimmig ◽  
Stephan Lang ◽  
Sven Brandau

The adverse prognosis of most patients with ovarian cancer is related to recurrent disease caused by resistance to chemotherapeutic and targeted therapeutics. Besides their direct activity against tumor cells, monoclonal antibodies and tyrosine kinase inhibitors (TKIs) also influence the antitumoral activity of immune cells, which has important implications for the design of immunotherapies. In this preclinical study, we treated different ovarian cancer cell lines with anti-epidermal growth factor receptor (EGFR) TKIs and co-incubated them with natural killer (NK) cells. We studied treatment-related structural and functional changes on tumor and immune cells in the presence of the anti-EGFR antibody cetuximab and investigated NK-mediated antitumoral activity. We show that long-term exposure of ovarian cancer cells to TKIs leads to reduced responsiveness of intrinsically sensitive cancer cells over time. Inversely, neither long-term treatment with TKIs nor cetuximab could overcome the intrinsic resistance of certain ovarian cancer cells to anti-EGFR agents. Remarkably, tumor cells pretreated with anti-EGFR TKIs showed increased sensitivity towards NK cell-mediated antibody-dependent cellular cytotoxicity (ADCC). In contrast, the cytokine secretion of NK cells was reduced by TKI sensitization. Our data suggest that sensitization of tumor cells by anti-EGFR TKIs differentially modulates interactions with NK cells. These data have important implications for the design of chemo-immuno combination therapies in this tumor entity.


Sign in / Sign up

Export Citation Format

Share Document