Comparative leaf development of juvenile and adult Pseudopanax crassifolius

1994 ◽  
Vol 72 (5) ◽  
pp. 658-670 ◽  
Author(s):  
Michael J. Clearwater ◽  
Kevin S. Gould

We describe and compare leaf development in juvenile and adult shoots of Pseudopanax crassifolius, a strongly heteroblastic tree native to New Zealand. The shoot apical meristem is significantly larger in adult plants than in juvenile plants. Leaf primordia of the two forms are morphologically comparable at inception. The allometry of leaf length and width is similar in both forms up to a length of 7 mm. However, a shape index based on the relative position of maximum leaf width indicates that their morphology diverges when leaf primordia are 300 μm long. Laminae are initiated when the leaf primordium is shorter in adult shoots than in juvenile shoots. Maturation processes of the two leaf forms are similar. Cells and tissue types expand and differentiate in an acropetal direction. When leaf length, expressed as a proportion of mature leaf length, is used as a developmental index, the timing of all stages of leaf differentiation is comparable for the two leaf forms. The juvenile form is considered to be derived from the adult form by accelerated growth of the primordial leaf axis. Key words: Pseudopanax crassifolius, heteroblasty, leaf shape, development, allometry, New Zealand.

Botany ◽  
2009 ◽  
Vol 87 (2) ◽  
pp. 210-221 ◽  
Author(s):  
Julia Nowak ◽  
Adam Nowak ◽  
Usher Posluszny

Compound palm leaf development is unique and consists of two processes. First, the primordial tissue folds through differential growth, forming plications. Second, these plications separate through an abscission-like process, forming leaflets. The second process of leaflet separation allows for the development of compound leaves. The question that this study addresses concerns the development of bifid leaves, as they do not form leaflets but only develop a cleft through an apical incision. The ideal genus to use for this study is Chamaedorea as it includes species with both pinnate and bifid leaves. Chamaedorea fragrans (Ruiz & Pav.) Mart. and Chamaedorea stolonifera H. Wendl. ex Hook. f. were chosen as the species with adult bifid leaves. Although Chamaedorea seifrizii Burret is a pinnate-leaved palm, its juvenile leaves are bifid. Scanning electron microscopy and light microscopy were used to study the development of bifid leaves. Our results indicate that neither of these bifid palms develop separation sites within the lamina, but rather the apical cleft develops through “late leaflet separation” or by an abscission-like process. In contrast, C. seifrizii juvenile leaves exhibit “early leaflet separation” when developing the apical cleft.


2017 ◽  
Vol 7 (4) ◽  
pp. 432-439 ◽  
Author(s):  
Seyed Mehdi Talebi ◽  
Reza Rezakhanlou ◽  
A V. Matsyura

<p><em>Salvia multicaulis</em> is a widespread species of Lamiaceae family in Iran. There are many discussions about its infraspecific variations. Although some varieties were definite for this species in various parts of the world, no infraspecific taxon was reported in Iran and all samples of this species were named as S. multicaulis. In this study, morphological characteristics of S. multicaulis populations, naturally growing in Iran, was examined. Twenty-two traits were examined in 94 individuals of this species to<br />identify their phenotypic difference. Most of the investigated features were showing a high degree of variability, but it was highly pronounced for some characteristics such as basal leaf shape, basal leaf width, basal leaf length/ width ratio and basal petiole length. Significant positive/negative correlations were observed between some morphological variables. Furthermore, significant negative correlations were found between the eastern distribution of populations with basal leaf petiole length and basal leaf length/ width ratio. Based on the UPGMA cluster analysis, populations were divided into two main branches. The first branch contained four populations, while the second branch was bigger and clustered in two sub-branches. In one of them,<br />three populations and in another one the rest populations arranged in two groups. CA joined plot confirmed that each of studied populations or group of populations had distinct morphological trait(s), which were useful in identification of them. Our findings supported population no. 13 had unique morphological traits such as the largest bracts and basal leaf petiole, highest flower number of each inflorescence cycle, widest and largest calyx. The conservation of the highly diverse populations of<br />Iranian S. multicaulis is recommended.</p>


2019 ◽  
Vol 14 (3) ◽  
pp. 17-24
Author(s):  
D. M. Anatov ◽  
Z. M. Аsadulaev ◽  
R. M. Osmanov ◽  
K. I. Akhmedova

Aim. The paper presents the results of assessment of the indigenous nature and  degree of similarity of apricot cultivars growing in the collection of the Mountain  Botanical Garden, Gunib, Dagestan, Russia based on a comparative analysis of the  variability of leaf morphological characteristics.   Material and Methods. The material assessed consisted of 33 apricot cultivars of  various ecological and geographical origins aggregated in the following groups: (a)  Dagestan – traditional cultivars; (b) Moscow ‐ selection from the Tsytsin Main Moscow Botanical Garden, Russian Academy of Sciences based on wild forms of Tajikistan and Kyrgyzstan; (c) European and (d) Asian ‐ from Central Asia, Tajikistan, China  and Altai.   Results. The closeness of Dagestan and European varieties in comparison with Asian  and Moscow varieties was shown. Most Dagestan (16 of 19) and European varieties  have round‐shaped leaves (leaf shape index 80‐ 100%), while those from Asia and  the Moscow Botanical Garden have leaves which are elongated elliptical and oval  (60‐80%). Using the method of principal component analysis (PCA), it was established that most cultivars of Dagestan origin have similar leaf shapes and sizes, of  which Tlama kurak (wide‐round), Hekobarsh (elongated) were distinguished by leaf  shape and Esdelik by leaf size.   Conclusion. Based on a discriminant analysis (Squared Mahalanobis Distances), it  was found that the indices of indicators of leaf attributes (width/length of leaf lamina; petiole length/length of lamina; apex angle/corner of leaf base) are more reliable criteria for differentiating apricot varieties into ecological and geographical  groups than their morphological characteristics.  


Development ◽  
1996 ◽  
Vol 122 (5) ◽  
pp. 1589-1600 ◽  
Author(s):  
T. Tsuge ◽  
H. Tsukaya ◽  
H. Uchimiya

For genetic analysis of mechanisms of leaf morphogenesis, we chose Arabidopsis thaliana (L.) Heynh. as a model for leaf development in dicotyledonous plants. Leaves of the angustifolia mutant were the same length as but narrower and thicker than wild-type leaves. The total number of cells in leaf blades of angustifolia plants was the same as in the wild type. At the cellular level in the angustifolia mutant it was found that the cells were smaller in the leaf-width direction and larger in the leaf-thickness direction than in wild type, revealing the function of the ANGUSTIFOLIA gene, which is to control leaf morphology by regulating polarity-specific cell elongation. The existence of similar genes that regulate leaf development in the length direction was, therefore, predicted. Three loci and several alleles associated with short-leaved mutants were newly isolated as rotundifolia mutants. The rotundifolia3 mutant had the same number of cells as the wild type, with reduced cell elongation in the leaf-length direction. The features of the angustifolia rotundifolia3 double mutant indicated that ANGUSTIFOLIA and ROTUNDIFOLIA3 genes act independently. We propose that leaf expansion in Arabidopsis involves at least two independent developmental processes: width development and length development, with the ANGUSTIFOLIA and ROTUNDIFOLIA3 genes playing different polarity-specific roles in cell elongation.


2008 ◽  
Vol 133 (3) ◽  
pp. 396-407 ◽  
Author(s):  
John R. Stommel ◽  
Robert J. Griesbach

Considerable diversity exists in Capsicum L. germplasm for fruit and leaf shape, size, and color as well as plant habit. Using F1, F2, and backcross generations developed from diverse parental stocks, this report describes the inheritance patterns and relationships between unique foliar characters and diverse fruit and plant habit attributes. Our results demonstrate that pepper fruit color, shape, and fruit per cluster were simply inherited with modifying gene action. Broad-sense heritability for fruit color and shape and fruit per cluster was high, whereas narrow-sense heritability for these characters was moderate to low. Although fruit clustering was simply inherited, the number of fruit per cluster exhibited a quantitative mode of inheritance. High fruit counts per cluster were linked with red fruit color and anthocyanin pigmented foliage. Fruit shape was linked with immature fruit color and inherited independently of mature fruit color. Leaf color, length, and plant height were quantitatively inherited. Leaf shape did not vary, but leaf length varied and was positively correlated with leaf width. Broad-sense heritability for leaf characters, including leaf length, leaf width, and leaf color, was high. With the exception of leaf width, which exhibited low narrow-sense heritability, high narrow-sense heritability for leaf characters denoted additive gene action. Plant height displayed high broad-sense heritability. Moderate narrow-sense heritability suggested that additive effects also influence plant height. Analysis of segregating populations demonstrated that red and orange fruit color can be combined with all possible leaf colors from green to black. These results provide new data to clarify and extend available information on the inheritance of Capsicum fruit attributes and provide new information on the genetic control of leaf characters and plant habit.


2019 ◽  
Vol 20 (4) ◽  
pp. 866 ◽  
Author(s):  
Xue Fu ◽  
Jing Xu ◽  
Mengyu Zhou ◽  
Minmin Chen ◽  
Lan Shen ◽  
...  

In molecular breeding of super rice, it is essential to isolate the best quantitative trait loci (QTLs) and genes of leaf shape and explore yield potential using large germplasm collections and genetic populations. In this study, a recombinant inbred line (RIL) population was used, which was derived from a cross between the following parental lines: hybrid rice Chunyou84, that is, japonica maintainer line Chunjiang16B (CJ16); and indica restorer line Chunhui 84 (C84) with remarkable leaf morphological differences. QTLs mapping of leaf shape traits was analyzed at the heading stage under different environmental conditions in Hainan (HN) and Hangzhou (HZ). A major QTL qLL9 for leaf length was detected and its function was studied using a population derived from a single residual heterozygote (RH), which was identified in the original population. qLL9 was delimitated to a 16.17 kb region flanked by molecular markers C-1640 and C-1642, which contained three open reading frames (ORFs). We found that the candidate gene for qLL9 is allelic to DEP1 using quantitative real-time polymerase chain reaction (qRT-PCR), sequence comparison, and the clustered regularly interspaced short palindromic repeat-associated Cas9 nuclease (CRISPR/Cas9) genome editing techniques. To identify the effect of qLL9 on yield, leaf shape and grain traits were measured in near isogenic lines (NILs) NIL-qLL9CJ16 and NIL-qLL9C84, as well as a chromosome segment substitution line (CSSL) CSSL-qLL9KASA with a Kasalath introgressed segment covering qLL9 in the Wuyunjing (WYJ) 7 backgrounds. Our results showed that the flag leaf lengths of NIL-qLL9C84 and CSSL-qLL9KASA were significantly different from those of NIL-qLL9CJ16 and WYJ 7, respectively. Compared with NIL-qLL9CJ16, the spike length, grain size, and thousand-grain weight of NIL-qLL9C84 were significantly higher, resulting in a significant increase in yield of 15.08%. Exploring and pyramiding beneficial genes resembling qLL9C84 for super rice breeding could increase both the source (e.g., leaf length and leaf area) and the sink (e.g., yield traits). This study provides a foundation for future investigation of the molecular mechanisms underlying the source–sink balance and high-yield potential of rice, benefiting high-yield molecular design breeding for global food security.


Forests ◽  
2018 ◽  
Vol 9 (11) ◽  
pp. 714 ◽  
Author(s):  
Peijian Shi ◽  
David Ratkowsky ◽  
Yang Li ◽  
Lifang Zhang ◽  
Shuyan Lin ◽  
...  

Plant leaves exhibit diverse shapes that enable them to utilize a light resource maximally. If there were a general parametric model that could be used to calculate leaf area for different leaf shapes, it would help to elucidate the adaptive evolutional link among plants with the same or similar leaf shapes. We propose a simplified version of the original Gielis equation (SGE), which was developed to describe a variety of object shapes ranging from a droplet to an arbitrary polygon. We used this equation to fit the leaf profiles of 53 species (among which, 48 bamboo plants, 5 woody plants, and 10 geographical populations of a woody plant), totaling 3310 leaves. A third parameter (namely, the floating ratio c in leaf length) was introduced to account for the case when the theoretical leaf length deviates from the observed leaf length. For most datasets, the estimates of c were greater than zero but less than 10%, indicating that the leaf length predicted by the SGE was usually smaller than the actual length. However, the predicted leaf areas approximated their actual values after considering the floating ratios in leaf length. For most datasets, the mean percent errors of leaf areas were lower than 6%, except for a pooled dataset with 42 bamboo species. For the elliptical, lanceolate, linear, obovate, and ovate shapes, although the SGE did not fit the leaf edge perfectly, after adjusting the parameter c, there were small deviations of the predicted leaf areas from the actual values. This illustrates that leaves with different shapes might have similar functional features for photosynthesis, since the leaf areas can be described by the same equation. The anisotropy expressed as a difference in leaf shape for some plants might be an adaptive response to enable them to adapt to different habitats.


1971 ◽  
Vol 19 (2) ◽  
pp. 237
Author(s):  
J Burley ◽  
PJ Wood ◽  
AS Hans

Eight morphological characters of leaves were examined in 2-year-old trees of 25 provenances of Eucalyptus camaldulensis Dehn, grown in a replicated trial in Zambia. Provenances differed significantly in leaf length and width, base angle, and oil gland density but significant effects were attributed to trees within provenances. Leaf curvature also varied between provenances, trees, and branches. The tip angle and the number of veins did not vary significantly. Leaf length and oil gland density were related to maximum temperature at seed source rather than to latitude but the reverse occurred for leaf width. Significant amounts of variation were explained by a linear combination of temperature and latitude but not by longitude, altitude, or rainfall. Information on seven traits was combined in principal component analysis in which the first component (a measure of leaf shape) accounted for 36% of total observed variation while the second (weighted largely on leaf length) accounted for 26%. Mapping of both univariate and multivariate results indicated that there are two major ecotypes and gave some evidence of clinal and ecotypic variation within them. The conclusions support those of other workers both in natural populations in Australia and in exotic populations elsewhere.


1986 ◽  
Vol 64 (11) ◽  
pp. 2645-2649 ◽  
Author(s):  
E. K. Merrill

Green ash (Fraxinus pennsylvanica var. subintegerrima) seedlings are heteroblastic; during development they produce two types of leaves, simple and compound. When grown under controlled conditions, the sequence of leaf types is predictable. Simple leaves are always at the first four nodes; compound leaves are always at node 8 and above. Nodes 5 through 7 have progressively fewer simple leaves and more compound leaves. Leaf growth on seedlings meets the preconditions of the plastochron index and leaf plastochron index. These indices, as well as the length of single expanding leaves, can be used to predict lengths of leaf primordia at nodes 4 and 8 so that early, simple and compound leaf development can be compared in further studies of green ash.


Sign in / Sign up

Export Citation Format

Share Document