Preparation and lower critical solution temperature behavior investigation of new thermoresponsive poly(N-isopropylacrylamide-co-phthalocyanine) magnetic nanocomposites containing phthalocyanine-coated Fe3O4 hybrid

2016 ◽  
Vol 94 (8) ◽  
pp. 723-731
Author(s):  
Ali Reza Karimi ◽  
Leila Rahimi ◽  
Farnaz Azadikhah ◽  
Sahar Ghadimi

New thermoresponsive poly(N-isopropyl acrylamide-co-phthalocyanine) magnetic nanocomposites were prepared by in situ dispersion polymerization. 4-Nitrophthalic acid and CoCl2 were employed to synthesize tetranitrophthalocyanine and then it was converted to tetraaminophthalocyanine by sodium sulfide. The cobalt tetra(N-carbonylacrylic)aminophthalocyanine monomer was obtained by reaction of tetraaminophthalocyanine with maleic anhydrid. N-isopropylacrylamide as the main monomers, N,N′-methylenebisacrylamide as the cross-linker, poly(N-vinylpyrrolidone) as the steric stabilizer, potassium persulfate as the initiator, and new Fe-phthalocyanine oligomer/Fe3O4 nanohybrid particles (FePc/Fe3O4) as nanoparticles were used. The magnetite nanocomposites were characterized by Fourier-transform infrared spectrum, X-ray diffraction spectroscopy, scanning electron microscopy, thermogravimetric analysis, vibrating sample magnetometer, and differential scanning calorimetry. The results showed that the lower critical solution temperatures of the hydrogel nanocomposits were influenced by the content of FePc/Fe3O4 hybrid nanoparticles. The lower critical solution temperatures of the magnetic hydrogel nanocomposites F3 and F4 were at about 34 and 40 °C. The results show that the increase of FePc/Fe3O4 nanoparticle content caused the LCSTs of the hydrogels to increase. FePc/Fe3O4 nanoparticles were prepared from 4,4′-isopropyliden-bis-dioxydiphthalonitrile and FeCl3·6H2O via the solvothermal route. The sizes of nanoparticles were determined by scanning electron microscopy. They are spherical in shape and the average size of them is between 30 and 70 nm.

2015 ◽  
Vol 817 ◽  
pp. 185-191
Author(s):  
Xin Yu Lv ◽  
Er Jun Guo ◽  
Li Juan Wang ◽  
Xing Han ◽  
Xiang Jie Wang

The thermal stability of constituent particles in both as-rolled and solution treated in AA7A55 has been investigated by means of scanning electron microscopy (SEM) and differential scanning calorimetry (DSC). Three types of solution treatments were used to dissolve particles constituents. Whereas the degree of recrystallization aggravates which deteriorates the properties with increasing the solution temperature, a significant amount of recrystallization exists after utilizing 480°C solution treatment whereas a much smaller extent from 480°C to 490°C. And electrochemical and exfoliation corrosion matched with the degree of recrystallization. With increasing the recrystallization the corrosion become worse.


2021 ◽  
pp. 095400832110055
Author(s):  
Yang Wang ◽  
Yuhui Zhang ◽  
Yuhan Xu ◽  
Xiucai Liu ◽  
Weihong Guo

The super-tough bio-based nylon was prepared by melt extrusion. In order to improve the compatibility between bio-based nylon and elastomer, the elastomer POE was grafted with maleic anhydride. Scanning Electron Microscopy (SEM) and Thermogravimetric Analysis (TGA) were used to study the compatibility and micro-distribution between super-tough bio-based nylon and toughened elastomers. The results of mechanical strength experiments show that the 20% content of POE-g-MAH has the best toughening effect. After toughening, the toughness of the super-tough nylon was significantly improved. The notched impact strength was 88 kJ/m2 increasing by 1700%, which was in line with the industrial super-tough nylon. X-ray Diffraction (XRD) and Differential Scanning Calorimetry (DSC) were used to study the crystallization behavior of bio-based PA56, and the effect of bio-based PA56 with high crystallinity on mechanical properties was analyzed from the microstructure.


e-Polymers ◽  
2002 ◽  
Vol 2 (1) ◽  
Author(s):  
Andrea Pucci ◽  
Letizia Moretto ◽  
Giacomo Ruggeri ◽  
Francesco Ciardelli

AbstractA new polyethylene-compatible terthiophene chromophore, 5”-thio-(3- butyl)nonyl-2,2’:5’,2”-terthiophene, with melting point lower than 0°C was prepared and used for linear polarizers based on ultra-high-molecular-weight polyethylene (UHMWPE). Differential scanning calorimetry and scanning electron microscopy indicate that the new chromophore is dispersed uniformly in films of UHMWPE obtained by casting from solution. The films show excellent dichroic properties (dichroic ratio 30) at rather low drawing ratio (≈ 20) . Moreover, qualitative agreement is observed with the Ward pseudo-affine deformation scheme.


2019 ◽  
Vol 33 (11) ◽  
pp. 1466-1477
Author(s):  
Qingfa Zhang ◽  
Wenyu Lu ◽  
Liang Zhou ◽  
Donghong Zhang ◽  
Hongzhen Cai ◽  
...  

Biocomposites were prepared with corn straw slagging (CSS) and high-density polyethylene (HDPE) at four loading levels (10, 20, 30, and 40 wt%) by extrusion method. CSS/HDPE composites were tested by tension, oxygen index meter, differential scanning calorimetry, X-ray diffraction, and the scanning electron microscopy. The scanning electron microscopy showed that CSS was dispersed uniformly in the HDPE matrix and strong interfacial interaction was achieved, which had an important influence on the tensile strength of the composites. The tensile strength of the composites could be improved with proper increase of CSS and reached maximum value at 30 wt% content. Furthermore, the addition of CSS played an important role in improving the flame-retardant ability of CSS/HDPE composites, and the limited oxygen index was 31.26% at 40 wt% content, good flame-retardant effect achieved.


2019 ◽  
Vol 953 ◽  
pp. 209-214
Author(s):  
Yi Teng Zhang ◽  
Lian Zuo ◽  
Jin Chao Yang ◽  
Wei Xia Zhao ◽  
Xiang Xiong Zeng

The main objective of this study is to investigate the effect of cementitious capillary crystalline waterproofing (CCCW) material on the water impermeability and microstructure of concrete. The water impermeability of concrete covered with or without CCCW material was tested according to the Chinese standard GB 18445-2012. The results indicate that concretes coated with CCCW material showed much higher water impermeability than blank ones, and the ratio of water impermeability pressure between them reached 275. The samples obtained in various depths of hardened cement paste specimens with or without CCCW coating were analyzed through scanning electron microscopy (SEM) and thermogravimetry-differential scanning calorimetry (TG-DSC), to study the differences in microstructure and hydration products. The results present that after a 28-day standard curing, there were lots of ettringite crystals and CaCO3 formed in the paste in 1 cm from the coating, but the action depth of the CCCW coating could not reach 3 cm. The ettringite and CaCO3 is precipitated in the pore structure of cement matrix and filling the voids, which leads to the significant enhancement in water impermeability.


Zootaxa ◽  
2011 ◽  
Vol 2970 (1) ◽  
pp. 33 ◽  
Author(s):  
CLAUDIA M. SANDOVAL ◽  
ELSA NIEVES ◽  
VÍCTOR M. ANGULO ◽  
JOÃO ARISTEU DA ROSA ◽  
ELIS ALDANA

The external morphology of eggs of the species Belminus corredori Galvão & Angulo, 2006, Belminus herreri Lent & Wygodzinsky, 1979 and Belminus ferroae Sandoval, Pabón, Jurberg & Galvão, 2007 is described for the first time using scanning electron microscopy (SEM). Females lay one egg at a time; the shape of the egg is oval with lateral flattening, a rounded caudal area and a true and simple convex operculum. The average size of the egg among these species is 0.51– 0.58 mm in length and 0.36–0.4 mm in width. As a generic character we highlight the discovery of a chorion rim with one to four grooves always joined to the micropyles. All species present a clear polygonal pattern only in the operculum and in the egg’s cephalic region, while the median and caudal regions show a smooth appearance, features that are shared only with the eggs of the genus Alberprosenia. A discriminant analysis of the polygonal design of the operculum proved to be useful for the identification of the species.


2012 ◽  
Vol 535-537 ◽  
pp. 996-999 ◽  
Author(s):  
Bao Feng Zhang ◽  
Qi Chen ◽  
Xiao Wei Chen ◽  
Hong Liang Zhao

In this study, the effect of KBF4 addition on the microstructure of the Mg-6Zn-1Si alloy has been investigated by Optical Microscopy (OM), Scanning Electron Microscopy (SEM) with Energy Dispersive Spectrometer(EDS). At 1.5wt% KBF4 addition, the morphology of Mg2Si phase completely changed from Chinese script type into uniformly, dispersedly distributed graininess or small block, with the average size of the Mg-6Zn-1Si alloy decreasing from 135μm to 82μm.


Author(s):  
MONTUKUMAR PATEL ◽  
NIRAV V. PATEL ◽  
TEJAS B. PATEL

Objective: The primary objective of the current research was to prepare rilpivirine loaded Nanoparticles containing Chitosan using the ionic gelation method for HIV infections. Methods: The nanoparticles of rilpivirine were prepared using the ionic gelation technique. Further, nanoparticles were characterized by Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and in vitro drug release. Results: The optimized nanoparticles were found with a particle size of 130.30±5.29 nm (mean±SD) and entrapment efficiency (% EE) of 77.10±0.50%. Scanning electron microscopy technique exposed spherical particles with uniform size. It was observed that the nanoparticles created showed the absence of the crystalline nature of the drug and its switch to the amorphous state. Results showed that more than 45% of the pure drug is released in 50 min and after 90 min almost about 95% of the drug is released. Conclusion: The research study concluded that the in vitro release profile of nanoparticles was found to be sustained up to 24 hr. Sustained release of the rilpivirine could improve patient obedience to drug regimens, growing action effectiveness. 


2008 ◽  
Vol 575-578 ◽  
pp. 941-946
Author(s):  
Hong Yan Tang ◽  
Ji Hui Wang ◽  
Guo Qiang Gao ◽  
Wen Xing Chen

Fiberglass continuous strand mat(CSM)/poly(urethane-isocyanurate) composites were formed by SRIM process, treated under different conditions and then characterized based on dynamic mechanical thermal analysis (DMTA), differential scanning calorimetry (DSC), scanning electron microscopy (SEM) ,transmission electron microscopy (TEM) and the mechanical property tests. The results show that the mechanical properties of the composites could be increased with improving the degree of microphase separation. At a given temperature (120°C), the degree of microphase separation is the highest for 4h and decreases gradually with prolonging treatment time. For a given time (4h), the well microphase-separated morphology is obtained and the degree of microphase mixing is increased at 120°C and 140°C treatments, respectively. The degree of microphase separation of the composites decreases with enhancing the temperature to 140°C.


Sign in / Sign up

Export Citation Format

Share Document