Development of hybrid aeolian dunes: the William River dune field, northwest Saskatchewan, Canada

1986 ◽  
Vol 23 (12) ◽  
pp. 1974-1990 ◽  
Author(s):  
M. A. Carson ◽  
P. A. MacLean

Observations have been made on the structure, morphology, and pattern of sand movement on large-scale, roughly elongate, northwest–southeast-aligned aeolian sand dunes in a desert area of northern Saskatchewan, Canada. Transverse profiles show steeper northeast flanks, the lower parts of which are covered with psammophilous grasses. Dune structure is dominated by northeast-dipping accretion laminae, and 14C dates of organic material trapped between such exposed laminae on the southwest flank indicate migration to the northeast at about 0.5 m/year in the last few centuries. On the other hand, there is a progressive increase in height, bulk, symmetry, and peakedness of the dunes from northwest to southeast, suggestive of substantial along-dune sand movement. The present-day wind regime shows a potential resultant sand-transport vector to the southeast, virtually parallel to the dune axis; winds from the north-northeast and northeast dominate the first 6 months of the year, followed by winds from the west-southwest in the latter half. Field evidence of airflow and sand-movement patterns upon the surfaces of two dunes also indicates a strong along-dune component. The dunes are interpreted as hybrid landforms reflecting both transverse and longitudinal processes acting at the present time. Of particular sedimentological significance is the discordance between dune stratigraphy and the wind regime. Dune structure is controlled by a southwest–northeast imbalance in sand movement assumed to result from an asymmetric distribution of sand-trapping vegetation and from a seasonal contrast in sand mobility that partly correlates with seasonality in the wind regime. Both factors promote northeast migration normal to the potential resultant of effective winds.

2020 ◽  
Vol 8 (11) ◽  
pp. 892
Author(s):  
Laura Brakenhoff ◽  
Reinier Schrijvershof ◽  
Jebbe van der Werf ◽  
Bart Grasmeijer ◽  
Gerben Ruessink ◽  
...  

Bedform-related roughness affects both water movement and sediment transport, so it is important that it is represented correctly in numerical morphodynamic models. The main objective of the present study is to quantify for the first time the importance of ripple- and megaripple-related roughness for modelled hydrodynamics and sediment transport on the wave- and tide-dominated Ameland ebb-tidal delta in the north of the Netherlands. To do so, a sensitivity analysis was performed, in which several types of bedform-related roughness predictors were evaluated using a Delft3D model. Also, modelled ripple roughness was compared to data of ripple heights observed in a six-week field campaign on the Ameland ebb-tidal delta. The present study improves our understanding of how choices in model set-up influence model results. By comparing the results of the model scenarios, it was found that the ripple and megaripple-related roughness affect the depth-averaged current velocity, mainly over the shallow areas of the delta. The small-scale ripples are also important for the suspended load sediment transport, both indirectly through the affected flow and directly. While the current magnitude changes by 10–20% through changes in bedform roughness, the sediment transport magnitude changes by more than 100%.


1977 ◽  
Vol 14 (6) ◽  
pp. 1246-1262 ◽  
Author(s):  
D. T. A. Symons

A total of 295 cores (590 specimens) were collected at 59 sites in the Coast plutonic complex along an E–W section southwest of Kitimat, British Columbia. The sites represent the Ponder, Alastair Lake, and Quottoon plutons in the 40–50 Ma eastern K–Ar age zone and the Ecstall and Butedale plutons in the 64–80 Ma central age zone. After af demagnetization a stable remanent magnetization was isolated at 32 sites and these data were combined with available data from the Skeena River section about 100 km to the north. The remanence directions in sites from the NNW-trending north and south limbs of the Hawkesbury Warp provide a positive fold test when compared to the WNW-trending centre limb directions.In the Eocene eastern age zone the NNW limbs give a concordant pole position relative to the cratonic North American pole whereas the centre limb has undergone ≈ 50° of the counter-clockwise rotation and ≈ 10° of upward tilt of its western end to give a discordant pole. In the late Upper Cretaceous central age zone, the Ecstall–Butedale pluton was tilted 15° to the west on all limbs before the Eocene intrusion and Hawkesbury Warp deformation events to give a NNW-trend pole and WNW-trend pole diverging in opposite directions from the cratonic reference pole.The geologic field evidence from structural trends, from fault, fold, contact, and foliation attitudes, and from distribution of plutonic phases is consistent with the structural model. The regional geotectonic events are related to possible Cenozoic plate interactions on the western margin of the North American plate. This combination of concordant and discordant poles cannot be explained in terms of an excursion of the geomagnetic paleopole during intrusion, a large scale northward translation of the western Cordillera during the Cenozoic, or a combination of clockwise rotations and northward translations on the margin of the advancing North American plate. The fold test and polarity reversal pattern indicate that all plutons acquired a primary thermoremanent magnetization (TRM) during cooling and probably within ≈ 1 Ma after emplacement.


2021 ◽  
Vol 13 (10) ◽  
pp. 1987
Author(s):  
Stefano Fabbri ◽  
Edoardo Grottoli ◽  
Clara Armaroli ◽  
Paolo Ciavola

Nowadays, the employment of high-resolution Digital Surface Models (DSMs) and RGB orthophotos has become fundamental in coastal system studies. This work aims to explore the potentiality of low-cost Unmanned Aerial Vehicle (UAV) surveys to monitor the geomorphic and vegetation state of coastal sand dunes by means of high-resolution (2–4 cm) RGB orthophotos and DSMs. The area of study (Punta Marina, Ravenna, Italy), in the North Adriatic Sea, was considered very suitable for these purposes because it involves a residual coastal dune system, damaged by decades of erosion, fragmentation and human intervention. Recently, part of the dune system has been involved in a restoration project aimed at limiting its deterioration. RGB orthophotos have been used to calculate the spectral information of vegetation and bare sand and therefore, to monitor changes in their relative cover area extension over time, through the using of semi-automatic classification algorithms in a GIS environment. Elevation data from high-resolution DSMs were used to identify the principal morphological features: (i) Dune Foot Line (DFL); (ii) Dune Crest Line (DCL); Dune seaward Crest Line (DsCL); Stable Vegetation line (SVL). The USGS tool DSAS was used to monitor dune dynamics, considering every source of error: a stable pattern was observed for the two crest lines (DCL and DsCL), and an advancing one for the others two features (DFL and SVL). Geomorphological data, as well as RGB data, confirmed the effectiveness of planting operations, since a constant and progressive increase of the vegetated cover area and consolidation of the dune system was observed, in a period with no energetic storms. The proposed methodology is rapid, low-cost and easily replicable by coastal managers to quantify the effectiveness of restoration projects.


1980 ◽  
Vol 1 (17) ◽  
pp. 93 ◽  
Author(s):  
John R. Hails ◽  
John Bennett

Little is known about how air-sediment interaction processes control the differential rates and direction of dune migration along the coast of South Australia. Information is needed on sand transport and dune formation in order to establish better guidelines for conservation and agricultural management programmes in areas that are undergoing erosion. The writers, with financial support from the Coast Protection Board, Department for the Environment, South Australia, have commenced a pilot research project to examine dunes in the lower Coorong and adjacent areas in the southeast of the State (Figure 1). The aims of the project are - To determine: (a) instantaneous surface stress values on the windward slopes of active transgressive dunes; (b) sand movement over the crestline as a function of surface stress on the windward slope in order to establish the life expectancy of stability of individual dunes; (c) the extent to which the local topography affects the wind regime in the dunal areas. To obtain: (a) air trajectories over and around transgressive dunes; (b) information on dune geometry (slope inclinations, crest heights, base lengths, etc.).


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2497
Author(s):  
Sarah Jamal Mattar ◽  
Mohammad Reza Kavian Nezhad ◽  
Michael Versteege ◽  
Carlos F. Lange ◽  
Brian A. Fleck

This research presents a validation methodology for computational fluid dynamics (CFD) assessments of rooftop wind regime in urban environments. A case study is carried out at the Donadeo Innovation Centre for Engineering building at the University of Alberta campus. A numerical assessment of rooftop wind regime around buildings of the University of Alberta North campus has been performed by using 3D steady Reynolds-averaged Navier–Stokes equations, on a large-scale high-resolution grid using the ANSYS CFX code. Two methods of standard deviation (SDM) and average (AM) were introduced to compare the numerical results with the corresponding measurements. The standard deviation method showed slightly better agreements between the numerical results and measurements compared to the average method, by showing the average wind speed errors of 10.8% and 17.7%, and wind direction deviation of 8.4° and 12.3°, for incident winds from East and South, respectively. However, the average error between simulated and measured wind speeds of the North and West incidents were 51.2% and 24.6%, respectively. Considering the fact that the upstream geometry was not modeled in detail for the North and West directions, the validation methodology presented in this paper is deemed as acceptable, as good agreement between the numerical and experimental results of East and South incidents were achieved.


2019 ◽  
Vol 9 (24) ◽  
pp. 5543 ◽  
Author(s):  
Hui Yang ◽  
Jiansheng Cao ◽  
Xianglong Hou

A systematic study of the wind regime characteristics in a region can not only accurately grasp the dynamic factors of the development of aeolian geomorphology, but also provide a scientific basis for the prevention and treatment of regional sand disasters. Taking the Hobq Desert as the study area, the basic characteristics of dune are analyzed by using remote sensing images. Based on the annual meteorological data of six meteorological stations from 2009 to 2018, the spatial and temporal distribution characteristics of wind speed were obtained. With the daily wind data of three stations from 2009 to 2018, we have figured out the wind regime and sand transport characteristics of the Hobq Desert. The results show that the sand dune height of the Hobq Desert ranges large, the highest height is 5010 m and the lowest is 10 m. It decreases gradually from the west to the east. The height of dune mainly distributed below 1500 m, followed by 1500–2000 m. Migratory sand dunes in Hobq Desert accounts for 51.8% and is mainly distributed in the west of the desert. The distribution area of fixation sand dunes in Hobq Desert is the least, accounting for 8.3%. The migratory dune pattern is trellis dune, semimigrated dune and semifixed dune patterns include honeycomb dune, parabolic duneand brush dune, and fixation dune pattern is grass dune. Annual wind speed was greatest in the southeast and decreased moving to the northwest. The dominant wind direction was W and SW from 2009 to 2018 in the Hobq Desert, the average wind speed of the prevailing winds mainly distributed at 4–8 m/s. The frequency of wind speed exceeding 10 m/s is very low, with a maximum value of 10% or below. There is a low energy wind environment in the Hobq Desert, with intermediate annual directional variability and obtuse or acute bimodal wind regime. The resultant drift direction (RDD)at Dongsheng station was relatively constant from 2009 to 2018, it was about 350°. RDD differed significantly at Baotou and Linhestations were 181 ± 169° and 231 ± 121°, respectively.The relationship between drift potential (DP) and the average and maximum wind speed was expressed as a power function. DP was strongly correlated with them. There is no significant correlated between the temporal changes in DPandprecipitation and temperature from 2009 to 2018 in the Hobq Desert.


2018 ◽  
pp. 1-34
Author(s):  
Andrew Jackson

One scenario put forward by researchers, political commentators and journalists for the collapse of North Korea has been a People’s Power (or popular) rebellion. This paper analyses why no popular rebellion has occurred in the DPRK under Kim Jong Un. It challenges the assumption that popular rebellion would happen because of widespread anger caused by a greater awareness of superior economic conditions outside the DPRK. Using Jack Goldstone’s theoretical expla-nations for the outbreak of popular rebellion, and comparisons with the 1989 Romanian and 2010–11 Tunisian transitions, this paper argues that marketi-zation has led to a loosening of state ideological control and to an influx of infor-mation about conditions in the outside world. However, unlike the Tunisian transitions—in which a new information context shaped by social media, the Al-Jazeera network and an experience of protest helped create a sense of pan-Arab solidarity amongst Tunisians resisting their government—there has been no similar ideology unifying North Koreans against their regime. There is evidence of discontent in market unrest in the DPRK, although protests between 2011 and the present have mostly been in defense of the right of people to support themselves through private trade. North Koreans believe this right has been guaranteed, or at least tacitly condoned, by the Kim Jong Un government. There has not been any large-scale explosion of popular anger because the state has not attempted to crush market activities outright under Kim Jong Un. There are other reasons why no popular rebellion has occurred in the North. Unlike Tunisia, the DPRK lacks a dissident political elite capable of leading an opposition movement, and unlike Romania, the DPRK authorities have shown some flexibility in their anti-dissent strategies, taking a more tolerant approach to protests against economic issues. Reduced levels of violence during periods of unrest and an effective system of information control may have helped restrict the expansion of unrest beyond rural areas.


The key aspects of the process of designing and developing an information and cartographic control tool with business analytics functions for the municipal level of urban management are considered. The review of functionality of the developed tool is given. Examples of its use for the analysis and monitoring of implementation of the program of complex development of territories are given. The importance of application of information support of management and coordination at all levels of management as an integral part of the basic model of management and coordination system of large-scale urban projects of dispersed construction is proved. Information and map-made tool with business intelligence functions was used and was highly appreciated in the preparation of information-analytical and presentation materials of the North-Eastern Administrative District of Moscow. Its use made it possible to significantly optimize the list of activities of the program of integrated development of territories, their priority and timing.


2014 ◽  
Vol 31 (2) ◽  
Author(s):  
Jose Antonio Moreira Lima

This paper is concerned with the planning, implementation and some results of the Oceanographic Modeling and Observation Network, named REMO, for Brazilian regional waters. Ocean forecasting has been an important scientific issue over the last decade due to studies related to climate change as well as applications related to short-range oceanic forecasts. The South Atlantic Ocean has a deficit of oceanographic measurements when compared to other ocean basins such as the North Atlantic Ocean and the North Pacific Ocean. It is a challenge to design an ocean forecasting system for a region with poor observational coverage of in-situ data. Fortunately, most ocean forecasting systems heavily rely on the assimilation of surface fields such as sea surface height anomaly (SSHA) or sea surface temperature (SST), acquired by environmental satellites, that can accurately provide information that constrain major surface current systems and their mesoscale activity. An integrated approach is proposed here in which the large scale circulation in the Atlantic Ocean is modeled in a first step, and gradually nested into higher resolution regional models that are able to resolve important processes such as the Brazil Current and associated mesoscale variability, continental shelf waves, local and remote wind forcing, and others. This article presents the overall strategy to develop the models using a network of Brazilian institutions and their related expertise along with international collaboration. This work has some similarity with goals of the international project Global Ocean Data Assimilation Experiment OceanView (GODAE OceanView).


2021 ◽  
Author(s):  
Alba de la Vara ◽  
William Cabos ◽  
Dmitry V. Sein ◽  
Claas Teichmann ◽  
Daniela Jacob

AbstractIn this work we use a regional atmosphere–ocean coupled model (RAOCM) and its stand-alone atmospheric component to gain insight into the impact of atmosphere–ocean coupling on the climate change signal over the Iberian Peninsula (IP). The IP climate is influenced by both the Atlantic Ocean and the Mediterranean sea. Complex interactions with the orography take place there and high-resolution models are required to realistically reproduce its current and future climate. We find that under the RCP8.5 scenario, the generalized 2-m air temperature (T2M) increase by the end of the twenty-first century (2070–2099) in the atmospheric-only simulation is tempered by the coupling. The impact of coupling is specially seen in summer, when the warming is stronger. Precipitation shows regionally-dependent changes in winter, whilst a drier climate is found in summer. The coupling generally reduces the magnitude of the changes. Differences in T2M and precipitation between the coupled and uncoupled simulations are caused by changes in the Atlantic large-scale circulation and in the Mediterranean Sea. Additionally, the differences in projected changes of T2M and precipitation with the RAOCM under the RCP8.5 and RCP4.5 scenarios are tackled. Results show that in winter and summer T2M increases less and precipitation changes are of a smaller magnitude with the RCP4.5. Whilst in summer changes present a similar regional distribution in both runs, in winter there are some differences in the NW of the IP due to differences in the North Atlantic circulation. The differences in the climate change signal from the RAOCM and the driving Global Coupled Model show that regionalization has an effect in terms of higher resolution over the land and ocean.


Sign in / Sign up

Export Citation Format

Share Document