Coupled hydromechanical modeling of rock fractures under normal stress

2004 ◽  
Vol 41 (4) ◽  
pp. 686-697 ◽  
Author(s):  
M Bart ◽  
J F Shao ◽  
D Lydzba ◽  
M Haji-Sotoudeh

In this paper, a nonlinear poromechanical model is developed for a single rock fracture under normal stress. The fracture is represented by a set of voids, and the progressive fracture displacement is considered as a modification process of void space. Based on experimental data obtained from three representative rock fractures, the constitutive model is formulated through an extension of Biot poroelasticity theory to a saturated fracture. A generalized poroelastic coupling coefficient is introduced to describe the interaction between pore fluid pressure and fracture deformation. This coefficient is expressed as a function of fracture aperture. Five parameters involved in the model have been determined from mechanical and poromechanical compression tests. The validity of the model is checked on fluid flow tests under different normal stresses. Comparisons between numerical simulations and experimental data are provided.Key words: hydromechanical coupling, interfaces, joints, poroelasticity, rock mechanics, fractures.

Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-13 ◽  
Author(s):  
Jianli Shao ◽  
Qi Zhang ◽  
Wenbin Sun ◽  
Zaiyong Wang ◽  
Xianxiang Zhu

The influence of rock seepage must be considered in geotechnical engineering, and understanding the fluid flow in rock fractures is of great concern in the seepage effect investigation. This study is aimed at developing a model for inversion of rock fracture domains based on digital images and further study of non-Darcy flow. The visualization model of single rock fracture domain is realized by digital images, which is further used in flow numerical simulation. We further discuss the influence of fracture domain geometry on non-Darcy flow. The results show that it is feasible to study non-Darcy flow in rock fracture domains by inversion based on digital images. In addition, as the joint roughness coefficient (JRC) increases or the fracture aperture decreases, distortion of the fluid flow path increases, and the pressure gradient loss caused by the inertial force increases. Both coefficients of the Forchheimer equation decrease with increasing fracture aperture and increase with increasing JRC. Meanwhile, the critical Reynolds number tends to decrease when JRC increases or the fracture aperture decreases, indicating that the fluid tends to non-Darcy flow. This work provides a reference for the study of non-Darcy flow through rock fractures.


Fractals ◽  
2017 ◽  
Vol 25 (05) ◽  
pp. 1750051 ◽  
Author(s):  
NA HUANG ◽  
YUJING JIANG ◽  
RICHENG LIU ◽  
BO LI ◽  
ZHENYU ZHANG

This study investigates the roles of fracture roughness, normal stress and shear displacement on the fluid flow characteristics through three-dimensional (3D) self-affine fractal rock fractures, whose surfaces are generated using the modified successive random additions (SRA) algorithm. A series of numerical shear-flow tests under different normal stresses were conducted on rough rock fractures to calculate the evolutions of fracture aperture and permeability. The results show that the rough surfaces of fractal-based fractures can be described using the scaling parameter Hurst exponent [Formula: see text], in which [Formula: see text], where [Formula: see text] is the fractal dimension of 3D single fractures. The joint roughness coefficient (JRC) distribution of fracture profiles follows a Gauss function with a negative linear relationship between [Formula: see text] and average JRC. The frequency curves of aperture distributions change from sharp to flat with increasing shear displacement, indicating a more anisotropic and heterogeneous flow pattern. Both the mean aperture and permeability of fracture increase with the increment of surface roughness and decrement of normal stress. At the beginning of shear, the permeability increases remarkably and then gradually becomes steady. A predictive model of permeability using the mean mechanical aperture is proposed and the validity is verified by comparisons with the experimental results reported in literature. The proposed model provides a simple method to approximate permeability of fractal-based rough rock fractures during shear using fracture aperture distribution that can be easily obtained from digitized fracture surface information.


Geophysics ◽  
1997 ◽  
Vol 62 (1) ◽  
pp. 129-137 ◽  
Author(s):  
Bhaskar B. Thapa ◽  
Paul Hughett ◽  
Kenzi Karasaki

We develop a semiautomatic method of identifying rock fractures and analyzing their orientations from digital images of borehole walls. This method is based on an algorithm related to the Hough transform which is modified to find sinusoidal rather than linear patterns. The algorithm uses the high‐intensity contrast between the fracture aperture and the rock wall, as well as the sinusoidal trajectory defined by the intersection of the borehole and the fracture. The analysis rate of the algorithm itself is independent of fracture contrast and network complexity. The method has successfully identified fractures both in test cases containing several fractures in a noisy background and in real borehole images. The analysis rate was 0.3–1.2 minutes/m of input data, compared to an average of 12 minutes/m using an existing interactive method. An automatic version under development should open new possibilities for site characterization, such as real‐time exploration and analysis of tunnel stability and support requirements as construction proceeds.


The analysis of the previous results of the study on concrete stress-strain behavior at elevated temperatures has been carried out. Based on the analysis, the main reasons for strength retrogression and elastic modulus reduction of concrete have been identified. Despite a significant amount of research in this area, there is a large spread in experimental data received, both as a result of compression and tension. In addition, the deformation characteristics of concrete are insufficiently studied: the coefficient of transverse deformation, the limiting relative compression deformation corresponding to the peak load and the almost complete absence of studies of complete deformation diagrams at elevated temperatures. The two testing chambers provided creating the necessary temperature conditions for conducting studies under bending compression and tension have been developed. On the basis of the obtained experimental data of physical and mechanical characteristics of concrete at different temperatures under conditions of axial compression and tensile bending, conclusions about the nature of changes in strength and deformation characteristics have been drawn. Compression tests conducted following the method of concrete deformation complete curves provided obtaining diagrams not only at normal temperature, but also at elevated temperature. Based on the experimental results, dependences of changes in prism strength and elastic modulus as well as an equation for determining the relative deformation and stresses at elevated temperatures at all stages of concrete deterioration have been suggested.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2108
Author(s):  
Guanlin Liu ◽  
Youliang Chen ◽  
Xi Du ◽  
Peng Xiao ◽  
Shaoming Liao ◽  
...  

The cracking of rock mass under compression is the main factor causing structural failure. Therefore, it is very crucial to establish a rock damage evolution model to investigate the crack development process and reveal the failure and instability mechanism of rock under load. In this study, four different strength types of rock samples from hard to weak were selected, and the Voronoi method was used to perform and analyze uniaxial compression tests and the fracture process. The change characteristics of the number, angle, and length of cracks in the process of rock failure and instability were obtained. Three laws of crack development, damage evolution, and energy evolution were analyzed. The main conclusions are as follows. (1) The rock’s initial damage is mainly caused by tensile cracks, and the rapid growth of shear cracks after exceeding the damage threshold indicates that the rock is about to be a failure. The development of micro-cracks is mainly concentrated on the diagonal of the rock sample and gradually expands to the middle along the two ends of the diagonal. (2) The identification point of failure precursor information in Acoustic Emission (AE) can effectively provide a safety warning for the development of rock fracture. (3) The uniaxial compression damage constitutive equation of the rock sample with the crack length as the parameter is established, which can better reflect the damage evolution characteristics of the rock sample. (4) Tensile crack requires low energy consumption and energy dispersion is not concentrated. The damage is not apparent. Shear cracks are concentrated and consume a large amount of energy, resulting in strong damage and making it easy to form macro-cracks.


2008 ◽  
Vol 124 (2) ◽  
pp. 129-136 ◽  
Author(s):  
Yujing JIANG ◽  
Tomofumi KOYAMA ◽  
Bo LI ◽  
Yusuke TASAKU ◽  
Ryousuke SAHO ◽  
...  

Author(s):  
Nitish Sinha ◽  
Arun Kumar Singh ◽  
Vinit Gupta ◽  
Jitendra Kumar Katiyar

Adhesion and friction of soft solids on hard surfaces are the important properties for a variety of practical applications. In the present study, Coulomb's law of friction is used for characterizing adhesive friction as well as normal stress-dependent dynamic friction of a gelatin hydrogel on a fixed glass surface. The experimental data, concerning normal stress-dependent dynamic friction of different shear velocity, are obtained from literature. It is observed that both components of friction increase with shear velocity. More importantly, the scaling law shows that adhesive stress varies almost linearly with corresponding coefficient of friction of the hydrogel. A dynamic friction model is also used to analyze the same experimental data to predict a negative normal stress at which dynamic friction reduces to zero, and this result matches closely with the experimental value.


Author(s):  
Wenqi Ding ◽  
Dong Zhou ◽  
Xiaoqing Chen ◽  
Chao Duan ◽  
Qingzhao Zhang

Grouting reinforcement was used to improve rock strength and avoid seepage in rock engineering. A self-developed visualised test platform was developed and the influences of different fracture openness on grouting diffusion modes were revealed; the Bingham rheological model was imported to simulate the grouting diffusion process in a single plate fracture, the spatio-temporal distribution of the velocity field under different obstructions was determined using the finite element method. The results indicate that: 1) The grout diffuses faster with the increase of fracture openness, while a stagnation effect of the grouting diffusion velocity behind the obstruction occurs. 2) Due to obstructions, the grouting diffusion process can be divided into four stages: circular diffusion, flat diffusion, vortex diffusion, and butterfly diffusion. 3) The grouting diffusion area is divided into a fully-reinforced zone and a semi-reinforced zone, and the area of the latter increases with the fracture openness, while being little affected by the size of any obstruction. 4) Furthermore, some new grouting diffusion laws were revealed considering the asymmetrical arrangement of obstructions. The results presented in this work will be helpful for describing and predicting the grouting process in fracture networks.


2021 ◽  
Author(s):  
Amir A. Mofakham ◽  
Farid Rousta ◽  
Dustin M. Crandall ◽  
Goodarz Ahmadi

Abstract Hydraulic fracturing or fracking is a procedure used extensively by oil and gas companies to extract natural gas or petroleum from unconventional sources. During this process, a pressurized liquid is injected into wellbores to generate fractures in rock formations to create more permeable pathways in low permeability rocks that hold the oil. To keep the rock fractures open after removing the high pressure, proppant, which typically are sands with different shapes and sizes, are injected simultaneously with the fracking fluid to spread them throughout rock fractures. The extraction productivity from shale reservoirs is significantly affected by the performance and quality of the proppant injection process. Since these processes occur under the ground and in the rock fractures, using experimental investigations to examine the process is challenging, if not impossible. Therefore, employing numerical tools for analyzing the process could provide significant insights leading to the fracking process improvement. Accordingly, in this investigation, a 4-way coupled Computational Fluid Dynamic and Discrete Element Method (CFD-DEM) code was used to simulate proppant transport into a numerically generated realistic rock fracture geometry. The simulations were carried out for a sufficiently long period to reach the fractures’ steady coverage by proppant. The proppant fracture coverage is a distinguishing factor that can be used to assess the proppant injection process quality. A series of simulations with different proppant sizes as well as various fracking fluid flow rates, were performed. The corresponding estimated fracture coverages for different cases were compared. The importance of proppant size as well as the fluid flow rate on the efficiency of the proppant injection process, were evaluated and discussed.


Sign in / Sign up

Export Citation Format

Share Document